Меню Рубрики

Гиперзвуковые ла. Гиперзвуковые летательные аппараты: реальна ли опасность. Российские гиперзвуковые аппараты

Перспективный российский бомбардировщик – ответ на концепцию быстрого глобального удара?

Соревнование за освоение авиацией гиперзвуковых скоростей началось ещё во времена Холодной войны. В те годы конструкторы и инженеры СССР, США и других развитых стран проектировали новые самолёты, способные летать в 2-3 раза быстрее скорости звука. Гонка за скоростью породила множество открытий в области аэродинамики полётов в атмосфере и быстро достигла пределов физических возможностей пилотов и стоимости изготовления летательного аппарата.

В итоге первыми гиперзвук освоили ракетные конструкторские бюро в своих детищах - межконтинентальных баллистических ракетах (МБР) и ракетах-носителях. При выводе на околоземные орбиты спутников ракеты развивали скорость 18000 – 25000 км/час. Это намного превышало предельные параметры самых быстрых сверхзвуковых самолетов, как гражданских (Конкорд = 2150 км/ч, Ту-144 = 2300 км/ч), так и военных (SR-71 = 3540 км/час, МиГ-31 = 3000 км/час).

Отдельно хочется отметить, что при проектировании сверхзвукового перехватчика МиГ-31 авиаконструктор Г.Е. Лозино-Лозинский использовал в конструкции планера передовые материалы (титан, молибден и др.), что позволило самолету достигнуть рекордной высоты пилотируемого полёта (МиГ-31Д) и максимальной скорости в 7000 км/час в верхних слоях атмосферы. В 1977 году летчик-испытатель Александр Федотов установил на его предшественнике МиГ-25 абсолютный мировой рекорд высоты полета – 37650 метров (для сравнения, у SR-71 максимальная высота полета составила 25929 метров). К сожалению, двигатели для полетов на больших высотах в условиях сильно разреженной атмосферы тогда ещё не были созданы, так как эти технологии только разрабатывались в недрах советских НИИ и КБ в рамках многочисленных экспериментальных работ.

Новым этапом в развитии технологий гиперзвука стали исследовательские проекты по созданию авиационно-космических систем, которые совмещали в себе возможности авиации (пилотаж и манёвр, посадка на ВПП) и космических аппаратов (выход на орбиту, орбитальный полет, спуск с орбиты). В СССР и США эти программы отработали частично, явив миру космические орбитальные самолёты «Буран» и «Спейс Шаттл».

Почему частично? Дело в том, что вывод летательного аппарата на орбиту осуществлялся с помощью ракеты-носителя. Стоимость вывода была огромной, порядка 450 миллионов долларов (по программе «Спейс Шаттл»), что в разы превышало стоимость самых дорогих гражданских и военных самолётов, не позволяло сделать орбитальный самолёт массовым изделием. Необходимость вложения гигантских средств в создание инфраструктуры, обеспечивающей сверхбыстрые межконтинентальные перелёты (космодромы, центры управления полётом, топливно-заправочные комплексы) окончательно похоронила перспективу пассажирских перевозок.

Единственным заказчиком, хоть как-то заинтересованным в гиперзвуковых аппаратах, остались военные. Правда, этот интерес носил эпизодический характер. Военные программы СССР и США по созданию авиационно-космических самолётов шли разными путями. Наиболее последовательно они были реализованы всё-таки в СССР: от проекта по созданию ПКА (планирующего космического аппарата) до МАКС (многоцелевая авиационная космическая система) и «Бурана» была выстроена последовательная и непрерывная цепочка научно-технических заделов, на основании которых создавался фундамент будущих экспериментальных полётов прототипов гиперзвуковых самолётов.

Ракетные КБ продолжали совершенствовать свои МБР. С появлением современных комплексов ПВО и ПРО, способных сбивать боевые части МБР на большом удалении, к поражающим элементам баллистических ракет стали предъявлять новые требования. Боеголовки новых МБР должны были преодолевать противовоздушную и противоракетную оборону противника. Так появились боевые части, способные преодолевать ВКО на гиперзвуковых скоростях (М=5-6).

Отработка гиперзвуковых технологий для боевых частей (боеголовок) МБР позволила начать несколько проектов по созданию оборонного и наступательного гиперзвукового оружия - кинетического (рельсотрон), динамического (крылатые ракеты) и космического (удар с орбиты).

Активизация геополитического соперничества США с Россией и Китаем реанимировала тему гиперзвука как перспективного инструмента, способного обеспечить преимущество в сфере космических и ракетно-авиационных вооружений. Повышение интереса к этим технологиям обусловлено и концепцией нанесения максимального ущерба противнику обычными (не ядерными) средствами поражения, которая фактически реализуется странами НАТО во главе с США.

Действительно, если в распоряжении военного командования будет хотя бы сотня гиперзвуковых аппаратов в неядерном оснащении, которые легко преодолевают существующие системы ПВО и ПРО, то этот «последний довод королей» напрямую влияет на стратегический баланс между ядерными державами. Мало того, гиперзвуковая ракета в перспективе может уничтожать элементы стратегических ядерных сил как с воздуха, так и из космоса в сроки не более часа от момента принятия решения до момента поражения цели. Именно такая идеология заложена в американской военной программе Prompt Global Strike (быстрый глобальный удар).

Осуществима ли подобная программа на практике? Аргументы «за» и «против» разделились примерно поровну. Давайте разберёмся.

Американская программа Prompt Global Strike

Концепция Prompt Global Strike (PGS) принята в 2000-е годы по инициативе командования ВС США. Её ключевым элементом является возможность нанести неядерный удар по любой точке земного шара в течение 60 минут после принятия решения. Работы в рамках этой концепции ведутся одновременно по нескольким направлениям.

Первым направлением PGS, и наиболее реалистичным с технической точки зрения, стало использование МБР с высокоточными неядерными боевыми блоками, в том числе с кассетными, которые оснащаются набором самонаводящихся суббоеприпасов. В качестве отработки этого направления была выбрана МБР морского базирования Trident II D5, доставляющая поражающие элементы на максимальную дальность 11300 километров. В данное время идут работы по снижению КВО боеголовок до значений в 60-90 метров.

Вторым направлением PGS выбраны стратегические гиперзвуковые крылатые ракеты (СГКР). В рамках принятой концепции реализуется подпрограмма X-51A Waverider (SED-WR). По инициативе ВВС США и поддержке DARPA с 2001 года разработку гиперзвуковой ракеты ведут фирмы Pratt & Whitney и Boeing.

Первым результатом проводящихся работ должно стать появление к 2020 году демонстратора технологий с установленным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). По оценкам экспертов СГКР с этим двигателем может иметь следующие параметры: скорость полёта М = 7–8, максимальная дальность полета 1300-1800 км, высота полета 10-30 км.

В мае 2007 года после детального рассмотрения хода работ по X-51A «WaveRider» военные заказчики утвердили проект ракеты. Экспериментальная СГКР Boeing X-51A WaveRider представляет собой классическую крылатую ракету с подфюзеляжным ГПВРД и четырехконсольным хвостовым оперением. Материалы и толщина пассивной теплозащиты выбирались в соответствии с расчетными оценками тепловых потоков. Носовой модуль ракеты выполнен из вольфрама с кремниевым покрытием, который выдерживает кинетический нагрев до 1500°С. На нижней поверхности ракеты, где ожидаются температуры до 830°С, используются керамические плитки, разработанные Boeing ещё для программы «Спейс Шаттл». Ракета X-51A должна отвечать высоким требованиям по малозаметности (ЭПР не более 0,01 м 2). Для разгона изделия до скорости, соответствующей M = 5 планируется установка тандемного ракетного ускорителя на твердом топливе.

В качестве основного носителя СГКР предполагается использовать самолеты стратегической авиации США. Пока нет сведений о том, как будут размещаться эти ракеты – под крылом или внутри фюзеляжа «стратега».

Третьим направлением PGS являются программы по созданию систем кинетического оружия, поражающего цели с орбиты Земли. Американцы подробно рассчитали результаты боевого применение стержня из вольфрама длиной около 6 метров и диаметром 30 см, сброшенного с орбиты и поражающего наземный объект на скорости порядка 3500 м/с. Согласно расчётам, в точке встречи высвободится энергия, эквивалентная взрыву 12 тонн тринитротолуола (тротила).

Теоретическое обоснование дало старт проектам двух гиперзвуковых аппаратов (Falcon HTV-2 и AHW), которые будут запускаться на орбиту ракетами-носителями и в боевом режиме смогут планировать в атмосфере с наращиванием скорости при подлёте к цели. Пока эти разработки находятся на стадии эскизного проектирования и экспериментальных пусков. Основными проблемными вопросами пока остаются системы базирования в космосе (космические группировки и боевые платформы), системы высокоточного наведения на цель и обеспечение скрытности выведения на орбиту (любой запуск и орбитальные объекты вскрываются российскими системами предупреждения о ракетном нападении и контроля космического пространства). Проблему скрытности американцы надеются решить после 2019 года, с запуском в эксплуатацию многоразовой авиационной космической системы, которая будет выводить полезную нагрузку на орбиту «по самолётному», посредством двух ступеней – самолёта-носителя (на основе Боинг 747) и беспилотного космического самолёта (на основе прототипа аппарата Х-37В).

Четвертым направлением PGS является программа по созданию беспилотного гиперзвукового самолёта - разведчика на базе известного Lockheed Martin SR-71 Blackbird.

Подразделение Lockheed - компания Skunk Works, в настоящее время разрабатывает перспективный БПЛА под рабочим название SR-72, который должен в два раза превысить максимальную скорость SR-71, достигнув значений около М = 6.

Разработка гиперзвукового разведчика вполне оправдана. Во-первых, SR-72 из-за своей колоссальной скорости будет малоуязвим для систем ПВО. Во-вторых, он заполнит «пробелы» в работе спутников, оперативно добывая стратегическую информацию и обнаруживая мобильные комплексы МБР, соединения кораблей, группировки сил противника на ТВД.

Рассматриваются два варианта самолета SR-72 - пилотируемый и беспилотный, также не исключается использование его в качестве ударного бомбардировщика, носителя высокоточного оружия. Скорее всего, в качестве вооружения могут использоваться облегченные ракеты без маршевого двигателя, поскольку при запуске на скорости в 6 М он не нужен. Высвобождающийся вес, вероятно, будет использован для увеличения могущества БЧ. Лётный прототип самолёта Lockheed Martin планирует показать в 2023 году.

Китайский проект гиперзвукового самолёта DF-ZF

27 апреля 2016 года американское издание «Washington Free Beacon» со ссылкой на источники в Пентагоне сообщило миру о седьмом испытании гиперзвукового китайского летательного аппарата DZ-ZF. Летательный аппарат был запущен с космодрома Тайюань (провинция Шаньси). По данным газеты самолёт совершал манёвры на скорости от 6400 до 11200 км/ч, и упал на полигоне в Западном Китае.

«По оценке разведки Соединенных Штатов, КНР планирует использовать гиперзвуковой самолёт в качестве средства доставки ядерных зарядов, способного преодолевать системы ПРО, - отметило издание. - DZ-ZF также может использоваться в качестве оружия, способного уничтожить цель в любой точке мира в течение часа».

Согласно анализу проведённому разведкой США всей серии испытаний - запуски гиперзвукового самолёта осуществлялись баллистическими ракетами малой дальности DF-15 и DF-16 (дальность до 1000 км), а также средней дальности DF-21 (дальность 1800 км). Не исключалась дальнейшая отработка запусков на МБР DF-31А (дальность 11200 км). По программе испытаний известно следующее: отделяясь от носителя в верхних слоях атмосферы, аппарат конусообразной формы с ускорением планировал вниз и маневрировал на траектории выхода на цель.

Несмотря на многочисленные публикации иностранных СМИ о том, что китайский гиперзвуковой летательный аппарат (ГЛА) предназначен для поражения американских авианосцев, китайские военные эксперты отнеслись к таким заявлениям скептически. Они указали на общеизвестный факт, что сверхзвуковая скорость ГЛА создаёт вокруг аппарата облако плазмы, которое мешает работе бортовой РЛС при корректировке курса и наведении на такую подвижную цель, как авианосец.

Как заявил в интервью China Daily профессор Командного колледжа ракетных войск НОАК полковник Шао Юнлин: «Сверхвысокая скорость и дальность делает его (ГЛА) превосходным средством уничтожения наземных целей. Он, в перспективе, может заменить межконтинентальные баллистические ракеты».

Согласно докладу профильной комиссии Конгресса США, DZ-ZF может быть принят на вооружение НОАК в 2020 году, а его усовершенствованная дальнобойная версия - к 2025 году.

Научно-технический задел России – гиперзвуковые самолёты

Гиперзвуковой Ту-2000

В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 1970-х годов, на основе серийного пассажирского самолёта Ту-144. Проводилось исследование и проектирование самолёта, способного развивать скорость до М=6 (ТУ-260) и дальностью полёта до 12000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта Ту-244, рассчитанного на полёт на высоте 28-32 км со скоростью М=4,5-5.

В феврале 1986 года в США начался НИОКР по создание космоплана Х-30 с воздушно-реактивной силовой установкой, способного выходить на орбиту в одноступенчатом варианте. Проект National Aerospace Plane (NASP), отличался обилием новых технологий, ключевой из которых был двухрежимный гиперзвуковой прямоточный воздушно-реактивный двигатель, позволяющий летать на скоростях М=25. По полученным разведкой СССР сведениям, NASP прорабатывался для гражданских и военных целей.

Ответом на разработку трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента американскому воздушно-космическому самолёту (ВКС). 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). По этому техзаданию МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту грузов, высокоскоростную трансатмосферную межконтинентальную транспортировку, решение военные задач, как в атмосфере, так и в ближнем космическом пространстве. Из представленных на конкурс работ ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» одобрение получил проект Ту-2000.

В результате предварительных исследований по программе МВКС выбиралась силовая установка на основе отработанных и проверенных решений. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре, они использовались на самолётах, скорость которых не превышала М=3, а ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере. Поэтому было принято важное решение – чтобы самолёт мог летать на сверхзвуковых скоростях и на всех высотах, его двигатели должны иметь черты и авиационной, и космической техники.

Оказалось, что наиболее рациональным для гиперзвукового самолёта является прямоточный воздушно-реактивный двигатель (ПВРД), в котором нет вращающихся частей, в комбинации с турбореактивным двигателем (ТРД) для разгона. Предполагалось, что для полётов с гиперзвуковыми скоростями наиболее подходит ПВРД на жидком водороде. А разгонный двигатель - это ТРД работающий или на керосине, или на жидком водороде.

В результате, за рабочий вариант была принята комбинация экономичного ТРД, работающего в диапазоне скоростей М=0-2,5, второго двигателя - ПВРД, разгоняющего летательный аппарат до М=20 и ЖРД для выхода на орбиту (разгон до первой космической скорости 7,9 км/с) и обеспечения орбитальных манёвров.

Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.

По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.

Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.

Атомный М-19

Давний «конкурент» по стратегическим летательным аппаратам ОКБ им. Туполева – Экспериментальный машиностроительный завод (сейчас ЭМЗ им. Мясищева) также занимался разработками одноступенчатого ВКС в рамках НИОКР «Холод-2». Проект получил название «М-19» и предусматривал проработку по следующим темам:

  • Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
  • Тема19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
  • Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
  • Тема 19-4. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.

Работы по перспективному ВКС проводились под непосредственным руководством Генерального конструктора В.М. Мясищева и Генерального конструктора А.Д. Тохунца. Для выполнения составных частей НИОКР были утверждены планы совместных работ с предприятиями МАП СССР, в том числе: ЦАГИ, ЦИАМ, НИИАС, ИТПМ и многими другими, а также с НИИ Академии наук и Министерства обороны.

Облик одноступенчатого ВКС М-19 определился после исследования многочисленных альтернативных вариантов аэродинамической компоновки. В части исследований характеристик силовой установки нового типа проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были также проработаны математические модели систем аппарата и комбинированной силовой установки с ядерным ракетным двигателем (ЯРД).

Использование ВКС с комбинированной ядерной двигательной установкой предполагало расширенные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области дальнего космоса, в том числе Луну и окололунное пространство.

Наличие на борту ВКС ядерной установки позволяло бы также использовать её в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.).

Комбинированная двигательная установка (КДУ) включала в себя:

  • Маршевый ядерный ракетный двигатель (ЯРД) на основе ядерного реактора с радиационной защитой;
  • 10 двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и форсажной камерой;
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
  • Два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
  • Распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.

В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД.

В завершенном виде концепция М-19 выглядела так: взлет и первоначальный разгон 500-тонный ВКС совершает как атомный самолёт с двигателями замкнутого цикла, причем в качестве теплоносителя, передающего тепло от реактора к десяти турбореактивным двигателям, служит водород. По мере разгона и набора высоты, водород начинает подаваться в форсажные камеры ТРД, чуть позже в прямоточные ГПРВД. Наконец, на высоте 50 км, при скорости полёта более 16М, включается атомный ЯРД с тягой 320 тс, который обеспечивал выход на рабочую орбиту высотой 185-200 километров. При взлетной массе около 500 тонн ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30-40 тонн.

Необходимо отметить малоизвестный факт, что при расчетах характеристик КДУ на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований и расчетов, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.

Аякс» - гиперзвук по-новому

Работы по созданию гиперзвукового самолёта проводились и в СКБ «Нева» (г. Санкт-Петербург), на основе которого было образовано Государственное научно-исследовательское предприятие гиперзвуковых скоростей (ныне ОАО «НИПГС» ХК «Ленинец»).

В НИПГС к созданию ГЛА подошли принципиально по-новому. Концепция ГЛА «Аякс» была выдвинута в конце 80-х гг. Владимиром Львовичем Фрайштадтом. Суть её состоит в том, что у ГЛА отсутствует тепловая защита (в отличие от большинства ВКС и ГЛА). Тепловой поток, возникающий при гиперзвуковом полёте, впускается внутрь ГЛА для повышения его энергоресурса. Таким образом, ГЛА «Аякс» представлял собой открытую аэротермодинамическую систему, которая часть кинетической энергии гиперзвукового воздушного потока преобразовывала в химическую и электрическую, попутно решая вопрос с охлаждением планера. Для этого были спроектированы основные компоненты реактора химической регенерации тепла с катализатором, размещаемыми под обшивкой планера.

Обшивка самолета в наиболее термонапряженных местах имела двухслойную оболочку. Между слоями оболочки размещался катализатор из термостойкого материала («мочалки из никеля»), который представлял собой подсистему активного охлаждения с реакторами химической регенерации тепла. Согласно расчётам, при всех режимах гиперзвукового полета температура элементов планера ГЛА не превышала 800-850°С.

В состав ГЛА входит интегрированный с планером прямоточный воздушно-реактивный двигатель со сверхзвуковым горением и основной (маршевый) двигатель - магнито-плазмохимический двигатель (МПХД). МПХД предназначался для управления воздушным потоком, с помощью магнито-газодинамического ускорителя (МГД-ускорителя) и выработки электроэнергии с помощью МГД-генератора. Генератор имел мощность до 100 МВт, что вполне хватало для питания лазера, способного поражать на околоземных орбитах различные цели.

Предполагалось, что маршевый МПХД будет способен изменять скорость полёта в широком диапазоне полетного числа Маха. За счет торможения гиперзвукового потока магнитным полем создавались оптимальные условия в сверхзвуковой камере сгорания. При испытаниях в ЦАГИ было выявлено, что созданное в рамках концепции «Аякс» углеводородное топливо сгорает в несколько раз быстрее, чем водород. МГД-ускоритель мог «разгонять» продукты сгорания, увеличивая максимальную скорость полета до М=25, что гарантировало выход на околоземную орбиту.

Гражданский вариант гиперзвукового самолёта рассчитывался на скорость полёта 6000-12000 км/ч, дальность полёта - до 19000 км и перевозку 100 пассажиров. О военных разработках проекта «Аякс» сведений нет.

Российская концепция гиперзвука – ракеты и ПАК ДА

Работы, проведенные в СССР и в первые годы существования новой России по гиперзвуковым технологиям позволяют утверждать, что оригинальная отечественная методология и научно-технический задел сохранены и задействованы для создания российских ГЛА – как в ракетном, так и самолётном исполнении.

В 2004-м году, во время проведения командно-штабных учений «Безопасность 2004», президент России В.В. Путин сделал заявление, до сих пор будоражащее умы «общественности». «Были проведены эксперименты и кое-какие испытания… Вскоре российские Вооруженные силы получат боевые комплексы, способные действовать на межконтинентальных расстояниях, с гиперзвуковой скоростью, с большой точностью, с широким манёвром по высоте и направлению удара. Эти комплексы сделают бесперспективными любые образцы противоракетной обороны – существующие или перспективные» .

Некоторые отечественные СМИ интерпретировали это заявление в меру своего понимания. Например: «В России была разработана первая в мире гиперзвуковая маневрирующая ракета, запуск которой был произведен со стратегического бомбардировщика Ту-160 в феврале 2004 года, когда проводились командно-штабные учения «Безопасность 2004»…


На самом деле на учениях было запущена баллистическая ракета РС-18 «Стилет» с новым боевым оснащением. Вместо обычной боеголовки на РС-18 находилось некое устройство, способное менять высоту и направление полета, и, тем самым, преодолевать любую, в том числе американскую, противоракетную оборону. Судя по всему, испытанный во время учений «Безопасность 2004» аппарат являлся малоизвестной гиперзвуковой крылатой ракетой (ГКР) Х-90, разработанной в МКБ «Радуга» в начале 1990-х годов.

Судя по ТТХ этой ракеты, стратегический бомбардировщик Ту-160 может брать на борт две Х-90. Остальные же характеристики выглядят так: масса ракеты - 15 тонн, маршевый двигатель - ГПВРД, ускоритель - РДТТ, скорость полета – 4-5 М, высота пуска – 7000 м, высота полёта – 7000-20000 м, дальность пуска 3000-3500 км, число боеголовок - 2, мощность боеголовки - 200 кт.

В споре о том, что лучше самолёт или ракета, чаще всего проигрывали самолёты, так как ракеты оказывались быстрее и результативнее. А самолёт стал носителем крылатых ракет, способных поражать цели на расстоянии 2500-5000 км. Запуская ракету по цели, стратегический бомбардировщик не заходил в зону противодействующей ПВО, поэтому делать его гиперзвуковым не имело смысла.

«Гиперзвуковое соревнование» между самолётом и ракетой сейчас близится к новой развязке с предсказуемым результатом - ракеты вновь опережают самолёты.

Оценим ситуацию. На вооружении дальней авиации, входящей в ВКС России, состоят 60 турбовинтовых самолётов Ту-95МС и 16 реактивных бомбардировщиков Ту-160. Срок службы Ту-95МС истекает через 5-10 лет. Министерство обороны приняло решение об увеличение количества Ту-160 до 40 единиц. Ведутся работы по модернизации Ту-160. Таким образом, в ВКС скоро начнут поступать новые Ту-160М. ОКБ Туполева также является основным разработчиком перспективного авиационного комплекса дальней авиации (ПАК ДА).

Наш «вероятный противник» не сидит, сложа руки, он вкладывает деньги в развитие концепции Prompt Global Strike (PGS). Возможности военного бюджета США по объёму финансирования значительно превышают возможности бюджета России. Министерство финансов и Министерство обороны спорят о размере финансирования Госпрограммы вооружений на период до 2025 года. И речь идёт не только о текущих расходах на закупку нового ВВТ, но и о перспективных разработках, к которым относятся ПАК ДА и технологии ГЛА.

В создании гиперзвуковых боеприпасов (ракеты или снаряда) не всё однозначно. Явное преимущество гиперзвука – скорость, короткое время подлёта к цели, высокая гарантия преодоления систем ПВО и ПРО. Однако немало и проблем – дороговизна одноразового боеприпаса, сложность управления при изменении траектории полёта. Эти же недостатки стали решающими аргументами при сокращении или закрытии программ по пилотируемому гиперзвуку, то есть по гиперзвуковым самолётам.

Проблема дороговизны боеприпаса может решаться решается наличием на борту самолёта мощного вычислительного комплекса расчётов параметров бомбометания (пуска), который превращает обычные бомбы и ракеты в высокоточное оружие. Аналогичные бортовые вычислительные комплексы, установленные в боеголовках гиперзвуковых ракет, позволяют приравнять их к классу стратегического высокоточного оружия, которое, по мнению военных специалистов НОАК, способно заменить комплексы МБР. Наличие ракетных ГЛА стратегической дальности поставит под вопрос необходимость содержания дальней авиации, как имеющей ограничения по скорости и эффективности боевого применения.

Появление в арсенале любой армии гиперзвуковой зенитной ракеты (ГЗР) вынудит стратегическую авиацию «прятаться» на аэродромах, т.к. максимальное расстояние, с которого могут применяться крылатые ракеты бомбардировщика, такие ГЗР преодолеют за несколько минут. Повышение дальности, точности и манёвренности ГЗР позволит им сбивать МБР противника на любых высотах, а также срывать массированный налёт стратегических бомбардировщиков до выхода их на рубежи пуска крылатых ракет. Пилот «стратега», возможно и обнаружит запуск ГЗР, но увести самолёт от поражения вряд ли успеет.

Разработки ГЛА, которые сейчас интенсивно ведутся в развитых странах, свидетельствуют, что ведется поиск надежного инструмента (оружия), которое может гарантированно уничтожить ядерный арсенал противника до начала применения ядерного оружия, как последнего аргумента при защите государственного суверенитета. Гиперзвуковое оружие может применяться и по основным центрам политического, экономического и военного могущества государства.

Гиперзвук в России не забыт, идут работы по созданию ракетного оружия на основе этой технологии (МБР «Сармат», МБР «Рубеж», Х-90), но делать ставку только на один вид вооружения («чудо-оружие», «оружия возмездия») было бы, как минимум, не правильно.

В создании ПАК ДА ясности нет до сих пор, так как до сих пор неизвестны основные требования по его назначению и боевому применению. Существующие стратегические бомбардировщики, как составляющие ядерной триады России, постепенно теряют свое значение из-за появления новых видов оружия, в том числе и гиперзвукового.

Курс на «сдерживание» России, провозглашенный главной задачей НАТО, объективно способен привести к агрессии против нашей страны, в которой будут участвовать подготовленные и вооружённые современными средствами армии «Североатлантического договора». По количеству личного состава и вооружений НАТО превосходит Россию в 5–10 раз. Вокруг России выстраивается «санитарный пояс», включающий военные базы и позиции ПРО. По сути, проводимые НАТО мероприятия в военных терминах описывается как оперативная подготовка театра военных действий (ТВД). При этом главным источником поставок вооружений остаётся США, как было и в Первую, и Второю мировые войны.

Гиперзвуковой стратегический бомбардировщик может в течение часа оказаться в любой точке земного шара над любым военным объектом (базой), с которого обеспечивается снабжение ресурсами группировок войск, в том числе и в «санитарном поясе». Малоуязвимы для систем ПРО и ПВО, он может уничтожить такие объекты мощным высокоточным неядерным оружием. Наличие такого ГЛА в мирное время станет дополнительным сдерживающим фактором для сторонников глобальных военных авантюр.

Гражданский ГЛА может стать технической основой прорыва в развитии межконтинентальных перелётов и космических технологий. Научно-технический задел проектов Ту-2000, М-19 и «Аякс» по-прежнему актуален и может быть востребован.

Каким же будет будущий ПАК ДА – дозвуковым с СГКР или гиперзвуковым с доработанным обычным оружием, решать заказчикам – Министерству обороны и Правительству России.

«Кто ещё до сражения побеждает предварительным расчетом, у того шансов много. Кто ещё до сражения не побеждает расчетом, у того шансов мало. У кого шансов много – побеждает. У кого шансов мало – не побеждает. Тем более тот, у кого шансов нет вовсе». /Сунь Цзы, «Искусство войны»/

Военный эксперт Алексей Леонков

  • по ссылке .
    Стоимость годовой подписки -
    10 800 руб.

в Избранное в Избранном из Избранного 0

Как отмечалось ранее, начиная с 70-х годов в ОКБ велись работы по созданию самолетов, способных выполнять длительный полет на крейсерских гиперзвуковых скоростях,
К означенному периоду в авиационно-космической технике и технологиях были достигнуты значительные результаты, полеты на сверхзвуковых скоростях стали обыденным явлением для самолетов военного назначения, внедрялись в эксплуатацию первые сверхзвуковые пассажирские самолеты, осуществлялись пилотируемые и беспилотные полеты в космос. Появились уже и серийные самолеты, летавшие в атмосфере со скоростями, соответствующими М=3 (МиГ-25, SR-71). Космические спускаемые аппараты и воздушно-космические самолеты с большими числами М совершали полеты на очень больших высотах, кратковременно проходя плотные слои атмосферы с гиперзвуковыми скоростями.

Общая диалектика развития авиационной техники, а также желание военно-политического руководства стран по обе стороны «железного занавеса» получить в свои руки очередное абсолютное оружие, поставило перед авиационной промышленностью передовых авиационных держав задачу создания летательных аппаратов самолетного типа с большими гиперзвуковыми скоростями, соответствующим М=3-10, способными выполнять полет на высотах 30-35 км. Подобный летательный аппарат по своим техническим решениям (как по части силовой установки, так и по своей конструкции) должен был в значительной степени отличаться от современных самолетов и космических аппаратов. Существовавшие типы ВРД, эффективно использовавшие атмосферу при полетах на малых высотах, из-за ограничений по температуре были приемлемы только для летательных аппаратов со скоростями полета, соответствующим М=3. С другой стороны, ракетные двигатели, для которых таких ограничений не было, из-за необходимости нести на борту полный запас топлива (горючее + окислитель), являлись нерациональными для продолжительных полетов в атмосфере.

Наиболее рациональным для принятых режимов будущего гиперзвукового самолета являлся прямоточный воздушно-реактивный двигатель (ПВРД) в комбинации с разгонным двигателем (ТРД или ЖРД). С целью достижения высокой эффективности силовой установки в качестве горючего предлагалось использовать жидкий водород. Для полетов в диапазоне чисел М=3-5, наиболее приемлемой определялась комбинированная силовая установка, содержащая турбореактивный и прямоточный двигатель, работающие на углеводородном горючем или сжиженным природным газе (СПГ). Для полетов со скоростями, превышающих М=5-6, наиболее подходящим являлся ПВРД на жидком водороде с разгонными ТРД на керосине или на жидком водороде.

Коренных изменений, с учетом способности летательного аппарата длительно воспринимать в полете высокие и сверхвысокие температуры, требовала конструкция подобного летательного аппарата. Выбор конструкции должен был определяться следующими факторами: с одной стороны, интенсивностью аэродинамического нагрева и его продолжительностью, а с другой стороны, кратностью ее использования или ресурсом.

Накопленный опыт показывал, что для летательных аппаратов, подверженных интенсивному аэродинамическому нагреву продолжительное время перспективными представлялись следующие типы конструкций: «горячая», теплоизолированная и активно-охлаждаемая. «Горячая» конструкция непосредственно контактируете окружающей средой. Теплоизолированная конструкция защищена теплоизлучающим слоем или экраном. Конструкция с активным охлаждением предполагала использование системы циркуляции теплоносителя, отводящего тепло от обшивки. Основными проблемами, требовавшими решения, являлись ослабление температурных напряжений, уменьшение коробления и увеличение ресурса конструкции. Одним из направлений, позволявшим ослабить температурные напряжения, являлось использование теплозащитных панелей (гофрированных, трубчатых и т.п.). Теплоизолированные конструкции предлагалось выполнять как сочетание силовой конструкции и теплозащиты. Самолет с умеренными требованиями к ресурсу и с крейсерским числом полета М=6 мог иметь «горячую» конструкцию или экранированную конструкцию, или упрощенную пассивную систему охлаждения. Для самолетов с большим ресурсом активная система охлаждения представлялась необходимой. В системе должны были использоваться промежуточные теплоноситель (например этилен гликоль), циркулирующий в каналах обшивки, передающий тепло через теплообменник жидкому водороду, который после этого должен был служить охладителем компонентов двигателя и поступать в камеру сгорания. Требования к активной системе могли быть снижены применением теплозащитных экранов или теплоизоляции.

Необходимость использования жидкого водорода в качестве топлива гиперзвукового самолета требует разработки высокоэффективной конструкции баков и низкотемпературной теплоизоляции (НТИ). Несмотря на то, что начиная с 60-х гг. было исследовано как в США, так и в СССР много различных конструкций криогенных баков и НТИ ни одна из этих конструкций не удовлетворяет как техническим, так и экономическим требованиям для гиперзвукового самолета. Так, конструкции криогенных баков и НТИ, разработанные лля применения в ракетной технике, имеют ограниченный ресурс. Отсутствие необходимости их многократного использования не требовало подробных исследований срока службы НТИ при длительном влиянии термоциклирова-ния, вибрации, климатических условий, старения материалов с точки зрения деградации их теплофизичес-ких и физикомеханических характеристик во времени.

Исследования по вопросам создания самолета на криогенном топливе показали, что среди множества технических проблем, одной из наиболее существенных является тепловая защита криогенных топливных баков.

Имевшийся, на тот период, задел в области гиперзвуковой аэродинамики был более весомый, чем в области конструкций и силовых установок будущих гиперзвуковых самолетов. Многие результаты аналитических и экспериментальных исследований, проведенных по другим авиационным, ракетным и авиационно-космическим программам (в частности по МВКА) были во многом применимы к гиперзвуковым самолетам. Предстояло еще много сделать для определения оптимальной аэродинамической схемы, обеспечивающей полезное взаимодействие силовой установки и планера гиперзвукового самолета. Как и для обычных самолетов, необходимо было вести исследования по применению систем активного управления при уменьшении запасов статической устойчивости, что должно было снизить размеры и массу летательного аппарата.

В СССР работы по гиперзвуковым самолетам в ударных вариантах начались в середине 70-х годов. К работам над этой перспективной тематикой было подключено несколько авиационных ОКБ страны и научно-исследовательских организаций авиационной промышленности.

В Туполевском ОКБ работы шли в следующих направлениях:

  • - исследования и проектирование гиперзвукового дальнего ударного самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=4 - проект «230» (Ту-230). Проектирование было начато в 1983 г. Эскизный проект был готов в 1985 г. Взлетная масса самолета определялась в пределах 180 т. Силовая установка должна была состоять из четырех комбинированных ТРД типа Д-80. Максимальный запас топлива (керосин) - 106 т. Высота крейсерского полета 25000 - 27000 м, максимальная дальность полета определялась в 8000 - 10000 км при продолжительности полета 2,3 часа, (длина самолета - 54,15 м, размах крыла - 26,83 м);
  • - исследования и проектирование гиперзвукового дальнего самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6 - проект «260» (Ту-260). Это был ЛА с двигателями, работающими на крейсерском режиме на жидком водороде с дальностью полета до 12000 км при 10 т полезной нагрузки;
  • - исследования и проектирование гиперзвукового межконтинентального самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6, при заданной максимальной дальности полета до 16000 км и с полезной нагрузкой до 20 т - проект «360» (Ту-360). Высота крейсерского полета 30000 - 33000 м.

По теме «260» и «360» в ОКБ было подготовлено несколько вариантов гиперзвукового самолета с силовой установкой с 4-6 маршевыми ПВРД и с шестью разгонными ТРДЦ тягой по 22000 кгс. Расчетный удельный расход топлива ПВРД на крейсерском режиме составлял 1,04 кг/кгсч. Выбранная компоновочно-аэродинамическая схема позволила получить расчетные значения качества 5,2 - 5,5. Для разгонных ТРДЦ предполагалось использовать керосин.

В рамках работ по гиперзвуковым самолетам в ОКБ было подготовлено предложение по проекту гиперзвукового пассажирского самолета, рассчитанного на крейсерский полет со скоростью, соответствующей М = 4,5-5 на высотах 28 - 32 км. Дальность полета определялась в 8500 - 10000 км. Число пассажиров - 250 - 280 человек. Силовая установка - комбинированная (ТРД + ПВРД), в качестве топлива должен был использоваться сжиженный природный газ.

В ходе исследований по гиперзвуковым самолетам в ОКБ были проведены обширные исследования материалов и конструкций, работающих в условиях интенсивного аэродинамического нагрева. Был сделан вывод, что одними из наиболее перспективных являются конструкции с металлическими внешними поверхностями. Разработка таких конструкций требовала решения ряда задач, основными среди которых являлись поиски новых конструкционных материалов с повышенным сопротивлением окислению и увеличенным пределом ползучести, а также разработка качественно новых типов многослойных металлических конструкций, эксплуатирующихся в условиях больших температурных градиентов. Основными типами таких конструкций, которые рассматривались в ОКБ для гиперзвуковых самолетов, были:

  • - металлические теплозащитные экраны для снижения тепловых потоков к основной силовой конструкции, не включенные в работу силовой конструкции и проектируемые на местную поперечную нагрузку;
  • - панели, обладающие как свойствами силовой конструкции, так и теплоизолирующими свойствами.

Одними из наиболее эффективных по несущей способности при работе в условиях нагрева до 250 - 500 °С являются многослойные конструкции из титановых сплавов.

В ходе этих исследований были разработаны технологии получения многослойных титановых панелей с ферменным заполнителем методом СПФ/ДС (сверхпластичная формовка и диффузионная сварка), в котором за одну операцию производилось и формирование из листового материала обшивок, заполнителя, элементов заготовок и соединения их между собой в готовую монолитную конструкцию.

Проводились исследования по низкотемпературной теплозащите (НТИ) топливных баков с криогенным топливом. Как наиболее перспективная рассматривалась теплозащита на основе экранно-вакуумной теплоизоляции (ЭВТИ) с мягкой герметичной оболочкой, обжатой атмосферным давлением для внешней НТИ, или давлением водорода для внутренней НТИ. Конструкция бака при этом может выполняться как из алюминиевых или титановых сплавов, так и из композиционных материалов. В ОКБ были изготовлены модельные баки, как с НТИ на основе пенопластов, так и с обжатой атмосферным давлением ЭВТИ. Были проведены ресурсные испытания этих баков с использованием жидкого азота.

Большое внимание уделялось проектированию криогенных топливных баков с большим ресурсом работы. При их разработке были созданы специальные нормы прочности, обеспечивающие необходимую герметичность в процессе эксплуатации.

Все эти и другие работы ОКБ имели большое значение для решения проблем создания гиперзвуковых летательных аппаратов, над которыми в те годы работало ОКБ, а также в работах по созданию криогенных самолетов, в частности, экспериментального Ту-155, проектов криогенных пассажирских самолетов Ту-204К, Ту-334К и др., над которыми ОКБ продолжает работать в настоящее время.

Сегодня ОКБ ОАО «Туполев» является обладателем уникальных технологий по криогенной авиационной технике, многие из которых были освоены в период работ по ВКС и гиперзвуковым самолетам.

За тысячелетия человечество выработало правило, по которому, чтобы выжить и одержать победу над противником оружие должно быть точнее, быстрее и мощнее, чем у противника. Таким требованиям соответствует в современных условиях авиационное оружие. В настоящее время за рубежом управляемые авиационные средства поражения (УАСП), в частности, управляемые авиационные бомбы (УАБ), калибр которых лежит в широких пределах – от 9 до 13600 кг, интенсивно развиваются: они оснащаются новыми типами систем наведения и управления, эффективными боевыми частями, совершенствуются способы боевого применения.

УАБ являются непременной принадлежность современных ударных авиационных комплексов (УАК) тактических и стратегического назначения. Несмотря на высокий уровень эффективности современных образцов УАБ, они, находясь в составе УАК, не всегда отвечают требованиям выполнения перспективных боевых задач. Как правило, УАК действуют вблизи линии фронта, при этом вся оперативность утрачивается.

Локальные войны последних десятилетий, и прежде всего военные операции в Ираке и Афганистане, выявили недостаточную оперативность обычного высокоточного оружия, в том числе УАБ. При выполнении боевого задания, проходит слишком большое время с момента обнаружения цели и принятия решения об атаке до ее поражения. Например, бомбардировщик В-2 Spirit, взлетая с аэродрома на территории США, должен лететь 12-15 ч до района атаки цели. Поэтому, в современных условиях требуется оружие быстрого реагирования и высокоточного действия на большом расстоянии, достигающим десятки тысяч км.

Одним из направлений исследований по выполнению указанных требований за рубежом является создание гиперзвуковых ударных систем нового поколения. Работы по созданию гиперзвуковых летательных аппаратов (ЛА) (ракет) и кинетического оружия, обладающего способностью высокоточного поражения целей ведутся в США, Великобритании, Франции и Германии.

Изучение зарубежного опыта для нас является чрезвычайно важным, так как перед отечественным оборонно-промышленным комплексом (ОПК), как отметил Д.Рагозин в своей статье «России нужна умная оборонка» (Газета «Красная Звезда». 2012. – 7 февраля. – С. 3) поставлена задача «в кратчайшие сроки вернуть себе мировое технологическое лидерство в области производства вооружений». Как отмечено в статье В.В.Путина «Быть сильными: гарантии национальной безопасности для России» (Газета «Российская газета». – 2012. – № 5708 (35). – 20 февраля. – С. 1-3) «задача предстоящего десятилетия заключается в том, чтобы новая структура Вооружённых Сил смогла опереться на принципиально новую технику. На технику, которая «видит» дальше, стреляет точнее, реагирует быстрее, чем аналогичные системы любого потенциального противника ».

Чтобы достичь этого, необходимо досконально знать состояние, тенденции и основные направления работ за рубежом. Конечно, всегда наши специалисты при выполнении НИОКР старались выполнить это условие. Но в сегодняшней обстановке, когда «у ОПК нет возможности спокойно догонять кого-то, мы должны совершить прорыв, стать ведущими изобретателями и производителями … Реагировать на угрозы и вызовы только сегодняшнего дня – значит обрекать себя на вечную роль отстающих. Мы должны всеми силами обеспечить техническое, технологическое, организационное превосходство над любым потенциальным противником ».

Считается, что впервые создание гиперзвуковых ЛА было предложено в 1930-х годах в Германии профессором Эйгеном Зенгером и инженером Иреной Бредт . Предлагалось создание горизонтально стартующего на ракетной катапульте самолета, под действием ракетных двигателей разгоняющегося до скорости около 5900 м/с, совершающего трансконтинентальный полет дальностью 5-7 тыс. км по рикошетирующей траектории со сбросом боевой нагрузки массой до 10 т и совершающего самолетную посадку на дальности более 20 тыс. км от точки старта.

Рассматривая развитие ракетного дела 1930-х годов инженер С.Королев и летчик-наблюдатель Е.Бурче (Королев С., Бурче Е. Ракета на войне//Техника-молодежи. – 1935. – №5. – С. 57-59) предложили схему применения ракетного боевого самолета-стратоплана: «Переходя к бомбометанию, необходимо учесть то обстоятельство, что точность попадания с высот, измеряемых десятками километров и при громадных скоростях стратоплана, должны быть ничтожной. Но зато вполне возможно и представляет большое значение подход к цели в стратосфере вне пределов досягаемости наземного оружия, быстрый спуск, бомбометание с обычных высот, обеспечивающих нужную меткость, и затем молниеносный подъем вновь на недосягаемую высоту ».

Концепция глобального удара на основе гиперзвукового оружия

В настоящее время данная идея начинает практически воплощаться. В США в середине 1990-х годов была сформулирована концепция Global Reach – Global Power («Глобальная досягаемость – глобальная мощь»). В соответствии с ней США должны обладать возможностью нанесения ударов по наземным и надводным целям в любой точке планеты в течение 1-2 ч после поступления приказа, без использования зарубежных военных баз с применением обычных средств поражения, например, УАБ.

Осуществить это возможно с использованием нового гиперзвукового оружия, состоящего из гиперзвуковой платформы-носителя и автономного ЛА с боевой нагрузкой, в частности УАБ, Основными свойствами такого оружия является высокая скорость, большая дальность, достаточно высокая маневренность, малая заметность и высокая оперативность применения.

В рамках масштабной программы ВС США Promt Global Strike («Быстрый глобальный удар»), позволяющей нанести удар обычным (неядерным) вооружением кинетического действия по любой точке планеты в течение одного часа, и проводимой в интересах Армии США осуществляется разработка гиперзвуковой ударной системы нового поколения в двух вариантах :

— первый под названием AHW (Advanced Hypersonic Weapon) использует в качестве сверхзвуковой платформы одноразовую ракету-носитель с последующим стартом к цели сверхзвукового ЛА AHW (гиперзвуковой планирующий ЛА можно также назвать маневрирующей боеголовкой), оснащенного управляемыми авиационными бомбами для поражения цели;

— второй под названием ударная гиперзвуковая ударная система FALCON HCV-2 использует гиперзвуковой самолет для создания условий старта автономного гиперзвукового планирующего ЛА CAV, который осуществляет полет к цели и ее поражение с помощью УАБ.

Рис.1 — Варианты конструктивно-аэродинамического облика ударного гиперзвукового ЛА HCV

Первый вариант технического решения имеет существенный недостаток, заключающийся в том, что ракета-носитель, доставляющая гиперзвуковой снаряд в точку старта AHW, может быть принята за ракету с ядерной боеголовкой.

В 2003 г. ВВС и Управление перспективных разработок (DARPA) Министерства обороны США на основе собственных разработок и предложений промышленности по перспективным гиперзвуковым системам разработали новую концепцию перспективной гиперзвуковой ударной системы, получившей название FALCON (Force Application and Launch from Continental US, «Применение силы при запуске с континентальной части Соединенных Штатов») или «Сокол».

Согласно этой концепции ударная система FALCON состоит из гиперзвукового многоразового (например, беспилотного) самолета-носителя HCV (Hypersonic Cruise Vehicle – ЛА, осуществляющий полет на высотах порядка 40-60 км с гиперзвуковой крейсерской скоростью, с массой боевой нагрузки до 5400 кг и дальностью 15-17000 км) и многоразового гиперзвукового высокоманевренного управляемого планера CAV (Common Aero Vehicle – унифицированный автономный ЛА) с аэродинамическим качеством 3-5. Базирование аппаратов HCV предполагается на аэродромах с взлетно-посадочной полосой длиной до 3 км.

Головным разработчиком ударного гиперзвукового аппарата HCV и средства доставки CAV ударной системы FALCON была выбрана корпорация Lockheed-Martin. В 2005 г. она приступила к работам по определению их технического облика и оценке технологической реализуемости проектов. К работам также подключены крупнейшие аэрокосмические фирмы США – Boeing, Northrop Grumman, Andrews Space. В связи с высоким уровнем технологического риска программы были проведены концептуальные исследования нескольких вариантов экспериментальных образцов средств доставки и их носителей с оценкой характеристик маневренности и управляемости.

При сбросе с носителя на гиперзвуковой скорости он может доставлять к цели на дальность до 16000 км различную боевую нагрузку с максимальной массой 500 кг. Аппарат предполагается выполнить по перспективной аэродинамической схеме, обеспечивающей высокое аэродинамическое качество. Для перенацеливания аппарата в полете и поражения выявленных в радиусе до 5400 км целей в состав его оборудования предполагается включить аппаратуру обмена данными в реальном масштабе времени с различными разведывательными системами и пунктами управления.

Поражение стационарных высокозащищенных (заглубленных) целей будет обеспечиваться применением средств поражения калибра 500 кг с проникающей боевой частью. Точность (круговое вероятное отклонение) должно составить около 3 м при скорости встречи с целью до 1200 м/с.

Рис.2 — Автономный гиперзвуковой ЛА CAV

Гиперзвуковой планирующий ЛА CAV с аэродинамическими органами управления имеет массу примерно 900 кг, которых на самолете-носителе может находиться до шести, несет в своем боевом отсеке две обычные авиабомбы массой по 226 кг. Точность применения бомб очень высокая – 3 метра. Дальность действия собственно CAV может составлять около 5000 км. На рис. 2 представлена схема разделения проникающих средств поражения с помощью надувных оболочек.

Схема боевого применения гиперзвуковой ударной системы FALCON выглядит примерно следующим образом. После получения задания гиперзвуковой бомбардировщик HCV взлетает с обычного аэродрома и с помощью комбинированной двигательной установки (ДУ) разгоняется до скорости, примерно соответствующей М=6. При достижении этой скорости ДУ переходит в режим гиперзвукового прямоточного воздушно-реактивного двигателя, разгоняя ЛА до М = 10 и высоты не менее 40 км. В заданный момент происходит отделение от самолета-носителя ударного гиперзвукового планирующего ЛА CAV, которые после выполнения боевого задания по поражению целей возвращаются на аэродром одной из заморских авиабаз США (в случае оснащения CAV собственным двигателем и необходимым запасом топлива он может вернуться и в континентальную часть США) (рис. 3).

Рис.3 — Схема боевого применения ГЛА с использованием волнообразной траектории полета ударного ЛА

Возможно два типа траектории полета. Первый тип характеризует волнообразную траекторию для гиперзвукового ЛА, который предложил еще в годы Второй Мировой войны немецкий инженер Эйген Зенгер в проекте бомбардировщика. Смысл волнообразной траектории в следующем. За счет разгона аппарат выходит из атмосферы и выключает двигатель, экономя топливо. Затем под действием гравитации самолет возвращается в атмосферу и снова включает двигатель (ненадолго, всего лишь на 20-40 с), который опять выбрасывает аппарат в космос.

Такая траектория кроме увеличения дальности способствует и охлаждению конструкции бомбардировщика, когда он находится в космосе. Высота полета не превышает 60 км, а шаг волны составляет около 400 км. Второй тип траектории имеет классическую траекторию прямолинейного полета.

Экспериментальные исследования по созданию гиперзвукового оружия

Были предложены гиперзвуковые модели HTV (Hypersonic Test Vehicle) массой около 900 кг и длиной до 5 м для оценки их летно-технических характеристик, управляемости и тепловых нагрузок на скоростях М = 10 – HTV-1, HTV-2, HTV-3.

Рис.4 — Экспериментальный гиперзвуковой ЛА HTV-1

Аппарат HTV-1 с продолжительность управляемого полета 800 с на скорости М = 10 был снят с испытаний ввиду технологической сложности в изготовлении теплозащитного корпуса и неверных конструктивных решений (рис. 4).

Рис.5 — Экспериментальный гиперзвуковой ЛА HTV-2

Аппарат HTV-2 выполнен по интегральной схеме с острыми передними кромками и обеспечивает качество 3,5-4, что позволит, как полагают разработчики, обеспечить заданную дальность планирования, а также маневренность и управляемость с помощью аэродинамических \щитков для наведения на цель с требуемой точностью (рис. 5). По данным Исследовательской службы Конгресса США (CRS) гиперзвуковой аппарат FALCON HTV-2 способен поражать цели на дальности до 27000 км и развивать скорость до 20 чисел Маха (23000 км /ч).

Рис.6 — Экспериментальный гиперзвуковой ЛА HTV-3

Аппарат HTV-3 представляет масштабную модель гиперзвукового ударного самолета HCV с аэродинамическим качеством 4-5 (рис. 6). Модель предназначена для оценки принятых технологических и конструктивных решений, аэродинамических и летно-технических характеристик, а также маневренности и управляемости в интересах дальнейшей разработки самолета HCV. Летные испытания предполагалось провести в 2009 г. Общая стоимость работ по изготовлению модели и проведению летных испытаний оценивается в 50 млн. долларов.

Проведение испытаний ударного комплекса предполагалось осуществить в 2008-2009 гг. с использованием ракет-носителей. Схема испытательного полета гиперзвукового ЛА HTV-2 представлена на рис. 7.

Как показали проведенные исследования, основные проблемные вопросы по созданию гиперзвукового ЛА будут связаны с разработкой силовой установки, выбором топлива и конструкционных материалов, аэродинамикой и динамикой полета, системой управления.

Рис.7 — Профиль испытательного полета гиперзвукового ЛА HTV-2

Выбор аэродинамической схемы и конструктивной компоновки ЛА должен исходить из условия обеспечения совместной работы воздухозаборника, силовой установки и других элементов ЛА. На гиперзвуковых скоростях вопросы исследования эффективности аэродинамических органов управления, при минимальных площадях стабилизирующих и управляющих поверхностей, шарнирных моментов, в особенности при подлете в район цели на скорости около 1600 м/с, становятся первостепенными, прежде всего, для обеспечения прочности конструкции и высокоточного наведения на цель.

По предварительным исследованиям температура на поверхности гиперзвукового аппарата достигает 1900°С, в то время, как для нормального функционирования бортовой аппаратуры температура внутри отсека должна быть не выше 70°С . Поэтому корпус аппарата должен иметь жаропрочную оболочку из высокотемпературных материалов и многослойную теплозащиту на основе существующих в настоящее время конструктивных материалов.

Гиперзвуковой аппарат оснащается комбинированной инерциально-спутниковой системой управления и в перспективе конечной системой самонаведения оптико-электронного или радиолокационного типа.

Для обеспечения прямолинейного полета наиболее перспективными для военных систем считаются прямоточные двигатели: СПВРД (сверхзвуковой прямоточный воздушно-реактивный двигатель) и ГПВРД (гиперзвуковой прямоточный воздушно-реактивный двигатель). Они просты в конструкции, поскольку практически не имеют подвижных частей (разве что насос подачи горючего) с использованием обычного углеводородного топлива.

Рис.8 — Гиперзвуковой ЛА X-51A

Аэродинамическая схема и конструкция аппарата CAV отрабатываются в рамках проекта Х-41, а самолета-носителя – по программе Х-51. Целью программы Х-51А является демонстрация возможностей создания ГПВРД, разработка термостойких материалов, интеграция планера и двигателя, а также других технологий, необходимых для полета в диапазоне 4,5-6,5 М. В рамках этой программы также ведутся работы по созданию баллистической ракеты с обычной боеголовкой, гиперзвуковой ракеты Х-51A Waverider и орбитального беспилотника Х-37В.

По данным CRS, финансирование программы в 2011 г. составило 239,9 млн. долл., из которых 69 млн. долл. были потрачены на AHW.

Рис.9 — Старт гиперзвукового ЛА AHW с ракеты-носителя

МО США провело очередное испытание новой планирующей гиперзвуковой бомбы AHW (Advanced Hypersonic Weapon). Испытание боеприпаса состоялось 17 ноября 2011 г. Основной целью испытания была проверка боеприпаса на маневренность, управляемость и устойчивость к высокотемпературному воздействию. Известно, что AHW была выведена в верхние слои атмосферы при помощи ракеты-носителя, запущенной с авиабазы на Гавайских островах (рис. 9). После отделения боеприпаса от ракеты, он спланировал и поразил цель на Маршалловых Островах около атолла Кваджалейн, расположенном в четырех тысячах километрах юго-западнее Гавайев, на гиперзвуковой скорости, в пять раз превышающей скорость звука. Полет длился менее 30 мин.

По словам пресс-секретаря Пентагона Мелинды Морган, целью тестирования боеприпаса был сбор данных об аэродинамике AHW, ее управляемости и устойчивости к воздействию высоких температур. Последние испытания HTV-2 состоялись в середине августа 2011 г. и оказались неудачными (рис. 10).

Рис.10 — Автономный гиперзвуковой ЛА HTV-2 в полете

По оценкам экспертов возможно принятие на вооружение ударной гиперзвуковой системы нового поколения первого поколения до 2015 г. Считается необходимым обеспечить с помощью одноразовой ракеты-носителя до 16 стартов в сутки. Стоимость пуска составляет около 5 млн. долларов. Создание полномасштабной ударной системы ожидается не ранее 2025-2030 гг.

Идея о военном применении самолета-стратоплана с ракетным двигателем, предложенная С.Королевым и Е.Бурче в 1930-х годах, судя по исследованиям, проводимым в США, начинает осуществляться в проектах по созданию ударного гиперзвукового оружия нового поколения. Применение УАБ в составе гиперзвукового автономного аппарата при атаке цели предъявляет высокие требования по обеспечению высокоточного наведения в условиях гиперзвукового полета и теплозащиты аппаратуры от воздействия кинетического нагрева.

На примере проводимых в США работ по созданию гиперзвукового оружия мы видим, что возможности по боевому применению УАБ далеко не исчерпаны и определяются они не только тактико-техническими характеристиками собственно УАБ, обеспечивающей заданные дальность, точность и вероятность поражения, но и средствами доставки. Кроме того, осуществление данного проекта, может решить и мирную задачу по оперативной доставке в любую точку земного шара грузов или средств спасения, терпящим бедствие.

Представленный материал заставляет серьезно задуматься над содержанием основных направлений развития отечественных управляемых ударных систем до 2020-2030 гг. При этом, надо учесть высказывание Д.Рогозина (Д.Рогозин, Работа по точному алгоритму // Национальная оборона. – 2012. – № 2. – С. 34-46):

«… мы обязаны отказаться от идеи «догнать и перегнать»… И вряд ли мы в короткий срок соберем силы и возможности, которые позволили бы на неимоверных скоростях догнать высокотехнологичные страны. Это и не нужно делать. Нужно другое, гораздо более сложное … Нужно рассчитать курс ведения вооруженной борьбы с перспективой до 30 лет, определить эту точку, выйти на нее. Понять, что нам нужно, то есть, готовить оружие не завтрашнего и даже не послезавтрашнего дня, а на историческую неделю вперед… Я повторяю, не думайте о том, что сейчас делают в США, во Франции, в Германии, думайте о том, что у них будет через 30 лет. И вы должны создать, то, что будет лучше, чем есть у них сейчас. Не идите за ними следом, попытайтесь понять, куда все клонится, а тогда мы выиграем ».

То есть, необходимо понять – возникла ли для нас подобная задача, а если «да», то как надо ее решать.

/Семёнов С.С., руководитель группы анализа и перспективных исследований ГНПП «Регион», к.т.н., otvaga2004.ru /

Обычный пассажирский самолет летает со скоростью порядка 900 км/час. Реактивный военный истребитель может развивать примерно втрое большую скорость. Однако современные инженеры из РФ и других стран мира активно разрабатывают еще более скоростные машины — гиперзвуковые самолеты. В чем специфика соответствующих концепций?

Критерии гиперзвукового самолета

Что такое гиперзвуковой самолет? Под таковым принято понимать аппарат, способный летать со скоростью, многократно превышающий таковую для звука. Подходы исследователей к определению конкретного ее показателя разнятся. Распространена методология, по которой самолет следует считать гиперзвуковым, если он кратно превышает скоростные показатели самых быстрых современных сверхзвуковых аппаратов. Которые составляют порядка 3-4 тыс. км/ч. То есть гиперзвуковой самолет, если придерживаться данной методологии, должен развивать скорость от 6 тыс. км/ч.

Беспилотные и управляемые аппараты

Подходы исследователей могут разниться также в аспекте определения критериев отнесения того или иного аппарата к самолетам. Есть версия, что к таковым правомерно относить только те машины, которые управляются человеком. Есть точка зрения, по которой самолетом также можно считать и беспилотный аппарат. Поэтому некоторые аналитики классифицируют машины рассматриваемого типа на те, что подлежат управлению человеком, и те, которые функционируют автономно. Подобное деление может быть оправдано, поскольку беспилотные аппараты могут обладать намного более внушительными техническими характеристиками, например, в части перегрузок и скорости.

Вместе с тем многие исследователи рассматривают гиперзвуковые самолеты как единую концепцию, для которой ключевой показатель — скорость. Неважно, сидит ли за штурвалом аппарата человек либо машина управляется роботом — главное, чтобы самолет был в достаточной мере быстрым.

Взлет — самостоятельный или с посторонней помощью?

Распространена классификация гиперзвуковых летательных аппаратов, в основе которой — отнесение их к категории тех, что способны взлетать самостоятельно, либо тех, которые предполагают размещение на более мощном носителе — ракете либо грузовом самолете. Есть точка зрения, по которой к аппаратам рассматриваемого типа правомерно относить главным образом те, что способны взлетать самостоятельно либо при минимальном задействовании иных типов техники. Однако те исследователи, которые считают, что основной критерий, характеризующий гиперзвуковой самолет, — скорость, должен быть первостепенным при любой классификации. Будь то отнесение аппарата к беспилотным, управляемым, способным взлетать самостоятельно либо с помощью других машин — если соответствующий показатель достигает указанных выше значений, то значит, речь идет о гиперзвуковом самолете.

Основные проблемы гиперзвуковых решений

Концепциям гиперзвуковых решений — много десятилетий. На протяжении всех лет разработки соответствующего типа аппаратов мировые инженеры решают ряд существенных проблем, объективно мешающих поставить выпуск «гиперзвука» на поток — подобно организации производства турбовинтовых самолетов.

Основная сложность в конструировании гиперзвуковых самолетов — создание двигателя, способного быть в достаточной мере энергоэффективным. Другая проблема — выстраивание необходимой аппарата. Дело в том, что скорость гиперзвукового самолета в тех значениях, что мы рассмотрели выше, предполагает сильный нагрев корпуса за счет трения об атмосферу.

Сегодня мы рассмотрим несколько образцов удачных прототипов летательных аппаратов соответствующего типа, разработчики которых смогли значительно продвинуться вперед в части успешного решения отмеченных проблем. Изучим теперь наиболее известные мировые разработки в части создания гиперзвуковых летательных аппаратов рассматриваемого типа.

от Boeing

Самый быстрый гиперзвуковой самолет в мире, как считают некоторые эксперты, это американский Boeing X-43A. Так, в ходе тестирования данного аппарата было зафиксировано, что он достигал скорости, превышающей 11 тыс. км/час. То есть примерно в 9,6 раза быстрее

Чем особенно примечателен гиперзвуковой самолет X-43A? Характеристики данного летательного аппарата таковы:

Предельная скорость, зафиксированная на тестах, - 11 230 км/час;

Размах крыльев - 1,5 м;

Длина корпуса - 3,6 м;

Двигатель - прямоточный, Supersonic Combustion Ramjet;

Топливо - атмосферный кислород, водород.

Можно отметить, что рассматриваемый аппарат относится к самым экологичным. Дело в том, что используемое топливо практически не предполагает выделения вредных продуктов горения.

Гиперзвуковой самолет X-43A был разработан совместными усилиями инженеров NASA, а также компаний Orbical Science Corporation и Minocraft. создавался порядка 10 лет. В его разработку было вложено около 250 млн. долларов. Концептуальная новизна рассматриваемого самолета в том, что он был задуман с целью испытания новейшей технологии обеспечения работы двигательной тяги.

Разработка от Orbital Science

Компания Orbital Science, которая, как мы отметили выше, приняла участие в создании аппарата X-43A, успела также создать свой гиперзвуковой самолет — X-34.

Его предельная скорость — более 12 тыс. км/ч. Правда, в ходе практических тестов она не была достигнута — более того, не удалось достичь показателя, который показан самолетом X43-A. Рассматриваемый летательный аппарат ускоряется при задействовании ракеты «Пегас», функционирующей на твердом топливе. Машина X-34 была впервые испытана в 2001 году. Рассматриваемый самолет ощутимо больше аппарата от Boeing — его длина составляет 17,78 м, размах крыльев — 8,85 м. Максимальная высота полета гиперзвуковой машины от Orbical Science — 75 километров.

Летательный аппарат от North American

Еще один известный гиперзвуковой самолет — X-15, выпущенный компанией North American. Данный аппарат аналитики относят к экспериментальным.

Он оснащен что дает повод некоторым экспертам не относить его, собственно, к классу самолетов. Однако наличие ракетных двигателей позволяет аппарату, в частности, совершать Так, во время одного из испытаний в таком режиме он был протестирован пилотами. Предназначение аппарата X-15 — исследование специфики гиперзвуковых полетов, оценка тех или иных конструкторских решений, новых материалов, особенностей управления подобными машинами в различных слоях атмосферы. Примечательно, что была утверждена еще в 1954 году. Летает X-15 со скоростью более 7 тыс. км/час. Дальность его полета — более 500 км, высота превышает 100 км.

Самые быстрые серийные самолеты

Изученные нами выше гиперзвуковые аппараты фактически относятся к категории исследовательских. Полезно будет рассмотреть некоторые серийные образцы самолетов, приближенных по характеристикам к гиперзвуковым или являющихся (по той или иной методологии) ими.

В числе подобных машин — американская разработка SR-71. Данный самолет некоторые исследователи не склонны относить к гиперзвуковым, поскольку его предельна скорость составляет порядка 3,7 тыс. км/час. В числе наиболее примечательных его характеристик — взлетная масса, которая превышает 77 тонн. Длина аппарата — более 23 м, размах крыльев — более 13 м.

Одним из самых быстрых военных самолетов считается российский МиГ-25. Аппарат может развивать скорость более 3,3 тыс. км/ч. Максимальный взлетный вес российского самолета — 41 тонна.

Таким образом, на рынке серийных решений, приближенных по характеристикам к гиперзвуковым, РФ — в числе лидеров. Но что можно сказать о российских разработках в части «классических» гиперзвуковых самолетов? Способны ли инженеры из РФ создать решение, конкурентное машинам от Boeing и Orbital Scence?

Российские гиперзвуковые аппараты

В данный момент российский гиперзвуковой самолет находится в стадии разработки. Но идет она достаточно активно. Речь идет о самолете Ю-71. Его первые испытания, судя по сообщениям в СМИ, были проведены в феврале 2015 года под Оренбургом.

Предполагается, что самолет будет использоваться в военных целях. Так, гиперзвуковой аппарат сможет при необходимости осуществлять доставку поражающих средств на значительные расстояния, вести мониторинг территории, а также задействоваться как элемент штурмовой авиации. Некоторые исследователи полагают, что в 2020-2025 гг. в РВСН поступит порядка 20 самолетов соответствующего типа.

В СМИ есть сведения о том, что рассматриваемый гиперзвуковой самолет России будет размещаться на баллистической ракете «Сармат», которая также находится на стадии проектирования. Некоторые аналитики считают, что разрабатываемый гиперзвуковой аппарат Ю-71 — это не что иное, как боеголовка, которая должна будет отделяться от баллистической ракеты на конечном участке полета, чтобы затем, благодаря высокой, характерной для самолета маневренности, преодолевать системы ПРО.

Проект «Аякс»

В числе наиболее примечательных проектов, связанных с разработкой гиперзвуковых самолетов, — «Аякс». Изучим его подробнее. Гиперзвуковой самолет «Аякс» — концептуальная разработка советских инженеров. В научной среде разговоры о ней начались еще в 80-е годы. В числе наиболее примечательных характеристик — наличие системы тепловой защиты, которая призвана защищать корпус от перегрева. Таким образом, разработчики аппарата «Аякс» предложили решение одной из «гиперзвуковых» проблем, обозначенных нами выше.

Традиционная схема тепловой защиты летательных машин предполагает размещение на корпусе особых материалов. Разработчики «Аякса» предложили иную концепцию, по которой предполагалось не защищать аппарат от внешнего нагрева, а впускать тепло внутрь машины, одновременно увеличивая ее энергоресурс. Основным конкурентом советского аппарат считался гиперзвуковой самолет «Аврора», создаваемый в США. Однако в связи с тем, что конструкторы из СССР существенно расширили возможности концепции, на новую разработку был возложен самый широкий круг задач, в частности, исследовательских. Можно сказать, что «Аякс» — гиперзвуковой многоцелевой самолет.

Рассмотрим более подробно технологические новшества, предложенные инженерами из СССР.

Итак, советские разработчики «Аякса» предложили использовать тепло, возникающее как результат трения корпуса самолета об атмосферу, преобразовывать в полезную энергию. Технически это могло быть реализовано посредством размещения на аппарате дополнительных оболочек. В результате формировалось что-то вроде второго корпуса. Его полость предполагалось заполнить неким катализатором, например, смесью горючего материала и воды. Теплоизолирующий слой, изготовленный из твердого материала, в «Аяксе» предполагалось заменить на жидкостный, который, с одной стороны, должен был защищать двигатель, с другой — способствовал бы каталитической реакции, которая, между тем, могла сопровождаться эндотермическим эффектом — перемещением тепла с наружной части корпуса внутрь. Теоретически охлаждение внешних частей аппараты могло быть каким угодно. Избыточное тепло, в свою очередь, предполагалось задействовать с целью повышения эффективности работы двигателя самолета. При этом данная технология позволяла бы генерировать вследствие реакции топлива и виды свободный водород.

В данный момент доступные широкой публике сведения о продолжении разработки «Аякса» отсутствуют, однако исследователи считают весьма перспективным внедрение советских концепций в практику.

Китайские гиперзвуковые аппараты

Конкурентом России и США на рынке гиперзвуковых решений становится Китай. В числе самых известных разработок инженеров из КНР — летательный аппарат WU-14. Он представляет собой гиперзвуковой управляемый планер, размещаемый на баллистической ракете.

МБР запускает летательный аппарат в космос, откуда машина резко пикирует вниз, развивая гиперзвуковую скорость. Китайский аппарат может монтироваться на разных МБР, обладающих дальностью от 2 до 12 тыс. км. Установлено, что в ходе тестов аппарат WU-14 смог развить скорость, превышающую 12 тыс. км/ч, превратившись, таким образом, в самый быстрый гиперзвуковой самолет по версии некоторых аналитиков.

Вместе с тем многие исследователи считают, что китайскую разработку не вполне правомерно относить к классу самолетов. Так, распространена версия, по которой аппарат следует классифицировать именно как боеголовку. Причем весьма эффективную. При полете вниз с отмеченной скоростью даже самые современные системы ПРО не смогут гарантировать перехвата соответствующей цели.

Можно отметить, что разработками гиперзвуковых аппаратов, задействуемых в военных целях, занимаются также Россия и США. При этом российская концепция, по которой предполагается создавать машины соответствующего типа, значительно отличается, как свидетельствуют данные в некоторых СМИ, от технологических принципов, реализуемых американцами и китайцами. Так, разработчики из РФ концентрируют усилия в области создания летательных аппаратов, оснащенных прямоточным двигателем, способных запускаться с земли. Россия планирует сотрудничество в этом направлении с Индией. Гиперзвуковые аппараты, создаваемые по российской концепции, как считают некоторые аналитики, характеризуются меньшей стоимостью и более широкой областью применения.

Вместе с тем гиперзвуковой самолет России, о котором мы сказали выше (Ю-71), предполагает, как считают некоторые аналитики, как раз-таки размещения на МБР. Если этот тезис окажется верным, то можно будет говорить о том, что инженеры из РФ работают сразу по двум популярным концептуальным направлениям в строительстве гиперзвуковых летательных аппаратов.

Резюме

Итак, вероятно, самый быстрый гиперзвуковой самолет в мире, если говорить о летательных аппаратах безотносительно их классификации, это все же китайский аппарат WU-14. Хотя нужно понимать, что реальные сведения о нем, в том числе касающиеся испытаний, могут быть засекречены. Это вполне соответствует принципам китайских разработчиков, которые часто во что бы то ни стало стремятся сохранить свои военные технологии в тайне. Скорость самого быстрого гиперзвукового самолета — более 12 тыс. км/ч. Его «догоняет» американская разработка X-43A — многие эксперты считают самым скоростным именно его. Теоретически гиперзвуковой самолет X-43A, а также китайский WU-14 может догнать разработка от Orbical Science, рассчитанная на скорость более 12 тыс. км/ч.

Характеристики российского самолета Ю-71 пока что не известны широкой публике. Вполне возможно, что они будут приближены к параметрам китайского летательного аппарата. Российские инженеры также ведут разработки по гиперзвуковому самолету, способному взлетать не на базе МБР, а самостоятельно.

Текущие проекты исследователей из России, Китая и США так или иначе связаны с военной сферой. Гиперзвуковые самолеты, безотносительно их возможной классификации, рассматриваются в первую очередь как носители вооружений, скорее всего, ядерных. Однако в работах исследователей из различных стран мира встречаются тезисы о том, что «гиперзвук», подобно атомным технологиям, вполне может быть мирным.

Дело за появлением доступных и надежных решений, позволяющих организовать серийное производство машин соответствующего типа. Использование подобных аппаратов возможно в самом широком спектре отраслей хозяйственного развития. Наибольшую востребованность гиперзвуковые летательные аппараты, вероятно, найдут в космической и исследовательской индустрии.

По мере удешевления технологий производства соответствующих машин заинтересованность в инвестировании в подобные проекты могут начать проявлять транспортные бизнесы. Промышленные корпорации, поставщики различных сервисов могут начать рассматривать «гиперзвук» как инструмент повышения конкурентоспособности бизнеса в части организации международных коммуникаций.

Холодная война, которая проходила между США и СССР в 1946-1991 годах, давно закончилась. По крайней мере так считают многие эксперты. Однако гонка вооружений не останавливалась ни на минуту, и даже сегодня она находится в стадии активного развития. Несмотря на то что сегодня основные угрозы для страны представляют террористические группировки, отношения между мировыми державами тоже являются напряженными. Все это создает условия для развития военных технологий, одной из которых является гиперзвуковой самолет.

Необходимость

Отношения между США и Россией сильно обострены. И хотя на официальном уровне США в России называют партнерской страной, многие политические и военные эксперты утверждают, что между странами идет негласная война не только на политическом фронте, и но и на военном в виде гонки вооружений. К тому же, США активно применяет НАТО для окружения России своими системами ПРО.

Это не может не беспокоить руководство России, которая уже достаточно давно приступила к разработке летательных аппаратов-беспилотников, превосходящих гиперзвуковую скорость. Эти беспилотники можно оснастить ядерной боеголовкой, и они беспрепятственно смогут доставить бомбу в любую точку мира, причем, достаточно быстро. Подобный гиперзвуковой самолет уже создан - это лайнер "Ю-71", который сегодня тестируется в строгой секретности.

Развитие гиперзвукового оружия

Впервые испытывать самолеты, которые могли летать со скоростью звука, начали в 50-х годах 20 века. Тогда это еще было связано с так называемой Холодной войной, когда две развитые державы (СССР и США) стремились обогнать друг друга в гонке вооружений. Первым проектом стала система "Спираль", которая представляла собой компактный орбитальный самолет. Он должен был составить конкуренцию и даже превзойти гиперзвуковой самолет США X-20 Dyna Soar. Также советский самолет должен был иметь способность развивать скорость до 7000 км/час и при этом не разваливаться в атмосфере при перегрузках.

И хотя советские ученые и конструкторы старались воплотить в жизнь подобную идею, не удалось даже приблизиться к заветным характеристикам. Опытный образец даже не взлетел, однако правительство СССР облегченно вздохнуло, когда американский самолет тоже провалился в ходе испытаний. Технологии того времени, в том числе в отрасли авиации, были бесконечно далеки от нынешних, поэтому создание самолета, который бы мог в несколько раз превышать скорость звука, было обречено на провал.

Впрочем, в 1991 году было проведено испытание самолета, который мог развивать скорость, превышающую скорость звук. Это была летающая лаборатория "Холод", созданная на базе ракеты 5В28. Испытание прошло успешно, и тогда самолет смог развить скорость 1900 км/час. Несмотря на наличие прогресса, разработку после 1998 года прекратили в связи с экономическим кризисом.

Технологии 21 века

Не существует точной и официальной информации о разработке гиперзвуковых самолетов. Впрочем, если собрать материалы из открытых источников, то можно сделать вывод, что подобные разработки осуществлялись сразу в нескольких направлениях:

  1. Создание боевых блоков для межконтинентальных баллистических ракет. Их масса превышала массу стандартных ракет, однако за счет возможности маневрирования в атмосфере перехватить их средствами ПРО невозможно или, как минимум, чрезвычайно сложно.
  2. Разработка комплекса "Циркон" - еще одно направление развития технологии, которая базируется на использовании сверхзвуковой ПРК "Яхонт".
  3. Создание комплекса, ракеты которого могут превышать скорость звука в 13 раз.

Если все данные проекты объединятся в одном холдинге, то совместными усилиями может быть создана ракета воздушного, наземного или корабельного базирования. Если проект Prompt Global Strike, создаваемый в США, будет успешным, то американцы получат возможность поражать любую точку мира в течение одного часа. Россия сможет защититься только технологиями собственной разработки.

Американскими и британскими специалистами фиксируются испытания сверхзвуковых ракет, которые могут развивать скорость до 11200 км/час. С учетом столь высокой скорости сбить их практически невозможно (на это не способна ни одна ПРО в мире). Более того, они даже слежке поддаются крайне сложно. Информации о проекте, который иногда фигурирует под названием "Ю-71", очень мало.

Что известно об российском гиперзвуковом самолете "Ю-71"?

С четом того, что проект засекречен, информации о нем очень мало. Известно, что данный глайдер является частью ракетной сверхзвуковой программы, и в теории он способен долететь до Нью-Йорка за 40 минут. Конечно, эта информация не имеет официального подтверждения и существует на уровне догадок и слухов. Но с учетом того, что российские сверхзвуковые ракеты могут достигать скорости 11200 км/час, подобные выводы кажутся вполне логичными.

По разным источникам гиперзвуковой самолет "Ю-71":

  1. Обладает высокой маневренностью.
  2. Может планировать.
  3. Способен развивать скорость свыше 11000 км/час.
  4. Может выходить в космос при осуществлении полета.

Заявления

На данный момент испытания гиперзвукового самолета России "Ю-71" еще не закончены. Однако некоторые эксперты утверждают, что к 2025 году Россия, возможно, получит данный сверхзвуковой глайдер, и его можно будет оснастить ядерным вооружением. Подобный самолет будет поставлен на вооружение, и в теории он будет способным в течение всего одного часа нанести точечный ядерный удар в любой точке планеты.

Представитель России при НАТО Дмитрий Рогозин заявил, что некогда самая развитая и передовая промышленность СССР отстала от гонки вооружений в течение последних десятилетий. Однако совсем недавно армия начала возрождаться. Устаревшая советская техника заменяется новыми образцами уже российских разработок. К тому же, застрявшее в 90-х годах в виде проектов на бумагах оружие пятого поколение обретает видимые очертания. По словам политика, новые образцы российского вооружения могут удивить мир непредсказуемостью. Вполне вероятно, что Рогозин имеет в виду новый гиперзвуковой летательный аппарат "Ю-71", который может нести ядерный боезаряд.

Считается, что разработка данного самолета началась в 2010 году, однако в США о нем узнали лишь в 2015. Если информация о его технических характеристик является правдивой, то Пентагону предстоит решать сложную задачу, так как используемые в Европе и на своей территории ПРО не смогут оказать противодействие подобному самолету. К тому же, США и многие другие страны окажутся просто беззащитными перед подобным оружием.

Прочие функции

Кроме возможности нанесения по противнику ядерных ударов, глайдер благодаря мощному современному оборудованию радиоэлектронной борьбы сможет производить разведку, а также выводить из строя устройства, оснащенные радиоэлектронной аппаратурой.

Если верить донесениям НАТО, то приблизительно с 2020 по 2025 годы в армии РФ может появиться до 24 подобных самолета, которые смогут незаметно пересечь границу и всего несколькими выстрелами уничтожить целый город.

Планы по развитию

Конечно, нет никаких данных по поводу принятия на вооружение перспективного самолета "Ю-71", однако известно, что его разрабатывают с 2009 года. При этом аппарат сможет не только летать по прямой траектории, но и маневрировать.

Именно маневренность на гиперзвуковых скоростях станет особенностью летательного аппарата. Доктор военных наук Константин Сивков утверждает, что межконтинентальные ракеты могут развивать сверхзвуковую скорость, но при этом они действуют как обычные баллистические боеголовки. Следовательно, их траектория полета легко рассчитывается, что дает возможность системе ПРО их сбивать. А вот управляемые летательные аппараты представляют серьезную угрозу противнику, поскольку их траектория является непредсказуемой. Следовательно, невозможно определить, в какой точке будет выброшена бомба, а так как точку сброса определить нельзя, то и траектория падения боеголовки не просчитывается.

В Туле 19 сентября 2012 года на заседании военно-промышленной комиссии Дмитрий Рогозин заявил, что вскоре следует создать новый холдинг, задача которого будет заключаться в развитии гиперзвуковых технологий. Сразу же были названы предприятия, которые войдут в состав холдинга:

  1. "Тактическое ракетное вооружение".
  2. "НПО машиностроения". На данный момент предприятие разрабатывает сверхзвуковые технологии, однако на данный момент компания находится в составе структуры Роскосмоса.
  3. Следующим членом холдинга должен стать концерн "Алмаз-Антей", который нынче занимается разработкой технологий воздушно-космической и противоракетной отрасли.

Рогозин считает, что подобное слияние необходимо, однако юридические аспекты не позволяют ему состояться. Также отмечается, что создание холдинга не предполагает поглощение одной компанией другой. Это именно слияние и совместная работа всех предприятий, что позволит ускорить процесс развития гиперзвуковых технологий.

Председатель совета при Минобороны РФ Игорь Коротченко также поддерживает идею создания холдинга, который бы занимался разработкой гиперзвуковых технологий. По его словам, новый холдинг действительно необходим, ведь он позволит направить все усилия на создание перспективного вида вооружения. Обе компании обладают большими возможностями, однако по отдельности они не смогут достичь тех результатов, которые возможны при совмещении усилий. Именно вместе они смогут внести вклад в развитие оборонного комплекса РФ и создать самый быстрый самолет в мире, скорость которого превзойдет ожидания.

Оружие как инструмент политической борьбы

Если к 2025 году на вооружении будут стоять не только гиперзвуковые ракеты с ядерными боеголовками, но и глайдеры "Ю-71", то это серьезно укрепит политические позиции России в ходе переговоров с США. И это совершенно логично, ведь все страны в ходе переговоров действуют с позиции силы, диктуя противоположной стороне выгодные ей условия. Равные переговоры между двумя странами возможны только при наличии мощного вооружения у обоих сторон.

Владимир Путин в ходе выступления на конференции "Армия-2015" заявил, что ядерные силы получают новые межконтинентальные ракеты в количестве 40 штук. Это оказались именно гиперзвуковые ракеты, и они могут на данный момент преодолевать существующие системы ПРО. Член экспертного совета военно-промышленной комиссии Виктор Мураховский подтверждает, что с каждым годом МБР совершенствуются.

Также Россия проводит испытания и разработку новых крылатых ракет, которые способны летать на гиперзвуковых скоростях. Они могут подходить к цели на сверхмалых высотах, что делает их практически незаметными для радаров. Более того, современные комплексы ПРО, находящиеся на вооружении НАТО, не могут поразить подобные ракеты из-за низкой высоты полета. К тому же, в теории они способны перехватывать цели, движущиеся при скорости до 800 метров в секунду, а скорость самолета "Ю-71" и крылатых ракет намного выше. Это делает системы ПРО НАТО почти бесполезными.

Проекты других стран

Известно, что Китай и США также разрабатывают аналог российскому гиперзвуковому самолету. Характеристики моделей противников пока что неясны, но уже можно считать, что китайская разработка способна составить конкуренцию российскому летательному аппарату.

Известный под названием Wu-14 китайский самолет испытывался в 2012 году, и еще тогда он смог развить скорость свыше 11000 км/час. Впрочем, о вооружении, которое способен нести этот аппарат, нигде не говорится.

Что касается американского беспилотника Falcon HTV-2, то он был испытан несколько лет тому назад, но на 10 минуте полета он разбился. Однако до него тестировался гиперзвуковой самолет Х-43А, которым занимались инженеры NASA. В ходе испытаний он показал фантастическую скорость - 11200 км/час, что превышает скорость звука в 9.6 раза. Опытный образец был испытан в 2001 году, однако тогда в ходе испытаний его уничтожили из-за того, что тот вышел из под контроля. Но в 2004 году аппарат был успешно испытан.

Подобные испытания Россией, Китаем и США ставит под сомнение эффективность современных систем ПРО. Внедрение гиперзвуковых технологий в военно-промышленной отрасли уже сегодня производит настоящую революцию в военном мире.

Заключение

Конечно, военно-техническое развитие России не может не радовать, и наличие подобного самолета на вооружение армии - это большой шаг при улучшении обороноспособности страны, однако глупо полагать, что другие мировые державы не предпринимают попытки в разработке подобных технологий.

Даже сегодня при свободном доступе к информации через интернет, мы очень мало знаем про перспективные разработки отечественного вооружения, а описание "Ю-71" известно только по слухам. Следовательно, мы и близко не можем знать, какие технологии прямо сейчас разрабатываются в других странах, включая Китай и США. Активное развитие технологий в 21 веке позволяет быстро изобретать новые виды топлива и применять незнакомые ранее технические и технологические приемы, поэтому развитие летательных аппаратов, в том числе военных, идет очень быстро.

Стоит отметить, что развитие технологий, позволяющих достичь скорости самолета, превышающей в 10 раз скорость звука, отразится не только в военной, но и гражданской сфере. В частности, такие известные производители лайнеров как Airbus или Boeing, уже заявляли о возможности создания гиперзвуковых самолетов для осуществления пассажирских авиаперевозок. Конечно, подобные проекты пока что только в планах, но вероятность разработки таких самолетов уже сегодня достаточно велика.