Меню Рубрики

Испытательный центр виам. Оптико-эмиссионный спектральный анализ металлов Спектральный анализ нержавеющей стали

РУКОВОДЯЩИЕ ТЕХНИЧЕСКИЕ МАТЕРИАЛЫ


ХИМИЧЕСКОГО И СПЕКТРАЛЬНОГО
AHA ЛИЗA
ОСНОВНЫХ И СВАРОЧНЫХ МАТЕРИАЛОВ В
ХИМНЕФТЕАППАРАТОСТРОЕНИИ

РД РТМ 26-362-80 -
РД РТМ 26-366-80

Взамен РТМ 26-31-70 -
РТМ 26-35-70

Письмом Министерства химического и нефтяного машиностроения от 08.09.1980 г. № 11-10-4/1601

от 08.09. 1980 г. № 11-10-4/1601 срок введения установлен с 01.10.1980 г.

Настоящие руководящие технические материалы распространяются на химические и физические методы исследования химсостава основных и сварочных материалов, применяемых в химическом и нефтяном машиностроении (кроме защитных газов).

Устанавливают типовые методы исследования материалов, имеющих различную основу, методы подсчета результатов и технику безопасности.

РД РТМ 26-366-80

РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

УСКОРЕННЫЕ И МАРКИРОВОЧНЫЕ МЕТОДЫ
ХИМИЧЕСКОГО И СПЕКТРАЛЬНОГО АНАЛИЗА
ОСНОВНЫХ И СВАРОЧНЫХ МАТЕРИАЛОВ В
ХИМНЕФТЕАППАРАТОСТРОЕНИИ

СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА СТАЛЕЙ

Настоящий руководящий технический материал распространяется на проведение контроля химического состава углеродистых, легированных, конструкционных и высоколегированных сталей, а также материалов сварных швов на основные маркировочные и легирующие элементы методом спектрального анализа.

1. ОБЩИЕ ТРЕБОВАНИЯ К МЕТОДАМ АНАЛИЗА

1.2. Состояние поставки эталонов (в качестве которых используют ГСО ИСО ЦНИИЧМ, а также вторичные производственные СОП) и проб должно быть одинаковым.

1.3. Массы эталонов и проб не должны отличаться значительно и должны быть не менее 30 г.

1.4. Чистота заточки поверхности эталонов и проб должна быть Rz20.

2. ФОТОГРАФИЧЕСКИЕ МЕТОДЫ

2.1. Определение хрома, никеля, марганца, кремния в углеродистых сталях.

2.1.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния в сталях марок Ст. 3, Ст. 5 и др. по ГОСТ 380-71 , в сталях марок 20, 40, 45 и др. по ГОСТ 1050 -74.

Кварцевый спектрограф средней дисперсии типа ИСП-22, ИСП-28 или ИСП-30.

Генератор дуги типа ДТ-2.

Генератор искры типа ИГ-3.

Микрофотометр МФ-2 или МФ-4.

Спектропроектор ПС-18.

Точильный станок с электрокорундовыми кругами зернистости № 36-64.

Набор напильников (для заточки эталонов и проб).

Устройство или приспособление для заточки металлических и угольных электродов.

Комплекты ГСО ИСО ЦНИИЧМ - 12; 53; 76; 77 и их заменяющие.

Постоянные электроды-прутки Æ от 6 до 8 мм из электролитической меди марки M - I по ГОСТ 859-78 и прутки Æ 6 мм из спектрально чистых углей марки C 1 , С 2 , С 3 .

Фотопластинки «спектральные», тип I, II.

Гидрохинон (парадиоксибензол) по ГОСТ 19627-74 .

Натрий сернистокислый (натрий сульфит) кристаллический по ГОСТ 429-76.

Метол (пара-метиламинофенолсульфит) по ГОСТ 5-1177-71.

Натрий углекислый безводный по ГОСТ 83-79 .

Аммоний хлористый по ГОСТ 3773-72 .

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 4215-66.

С торцевой поверхности пробы стали при помощи наждачного круга снимается слой 1 мм, затем проба затачивается напильником, качество поверхности должно быть не менее, чем Rz20. Медные электроды затачиваются на конус 90°, скругленный радиусом от 1,5 до 2,0 мм. Угольные электроды затачивают на усеченный конус с диаметром площадки от 1,0 до 1,5 мм. Источник света фокусируют на щель спектрального аппарата с помощью кварцевого конденсора с фокусным расстоянием 75 мм или трехлинзовой системы освещения. Установка линз производится на расстояниях, указанных в паспорте к спектрографу. Ширина щели спектрального аппарата от 0,012 до 0,015 мм.

2.1.4. Источник возбуждения спектра

В качестве источников возбуждения спектра используются дуга переменного тока (генератор ДГ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в табл. , ).

Таблица 1

Дуга переменного тока

Таблица 2

Высоковольтная искра

Величина параметров контура

Емкость, мкФ

Индуктивность, мкГ

Аналитический промежуток, мм

От 1,5 до 2,0

Схема «сложная»

Анализ проводят методом «трех эталонов» или фотометрического интерполирования, описанных в руководствах по спектральному анализу. Заточенные электроды, эталоны, пробы устанавливают в штатив. С помощью теневой проекции устанавливают составляющий аналитический промежуток. Съемку спектров производят с предварительным обжигом 10 с для дуги переменного тока и от 30 до 40 с для высоковольтной искры. Экспозицию выбирают в зависимости от чувствительности фотоматериалов (почернения аналитических пар должны лежать в области «нормальных»; для фотопластинок тип I область «нормальных» почернений составляет от 0,4 до 2,0). Спектры эталонов и проб фотографируют не менее 3 раз без ослабителя по методу «трех эталонов» и через 9-ступенчатый ослабитель по методу фотометрического интерполирования.

По окончании съемки фотопластинку обрабатывают в стандартном проявителе (раствор А и Б перед проявлением сливается в равных пропорциях).

Раствор А; готовят следующим образом: 1 г метола, 26 г натрия сернистокислого, 5 г гидрохинона, 1 г калия бромистого растворяют в 500 см 3 воды.

Раствор Б; готовят следующим образом: 20 г натрия углекислого растворяют в 500 см 3 воды.

Время проявления указывается на пачках фотопластинок, температура раствора должна быть от 18 до 20 °С. После проявления фотопластинку следует ополоснуть в воде или стоп-растворе (2,5 %-ный раствор уксусной кислоты), отфиксировать.

Фиксаж готовят следующим образом: 200 г натрия серноватистокислого; 27 г аммония хлористого растворяют в 500 см 3 дистилированной воды.

После фиксирования фотопластинку тщательно промывают в проточной холодной воде и сушат.

В случае метода «трех эталонов» обработка спектрограмм производится на микрофотометре МФ-2 или МФ-4. Щель микрофотометра от 0,15 до 0,25 мм, в зависимости от ширины спектральных линий. При методе фотометрического интерполирования оценка содержания анализируемых элементов производится визуально на спектропроекторе ПС-18.

2.1.7. Аналитические линии

а) дуговое возбуждение:

Cr 267,7 - Fe 268,3

Ni 305,0 - Fe 305,5

Mn 293,3 - Fe 292,6

Si 250,6 - Fe 250,7

б) искровое возбуждение:

Cr 267,7 - Fe 268,9

Ni 341,4 - Fe 341,3

При использовании метода «трех эталонов» градировочные графики строят в координатах ( D S , lg С ), при методе фотометрического интерполирования соответственно в

где D S - разность почернений определяемого элемента и линий сравнения железа;

lg С - логарифм концентрации;

J эл - интенсивность линии определяемого элемента;

J Fe - интенсивность линий железа.

Квадратичная ошибка воспроизводимости в зависимости от определяемой концентрации составляет от 2 до 5 %.

2.2. Определение хрома, никеля, марганца, кремния, меди, ванадия, молибдена, алюминия, вольфрама, бора в легированных конструкционных сталях

2.2.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния, алюминия, меди, ванадия, молибдена, вольфрама и бора в сталях марок 40Х, 15XM, 38ХМЮА и др. по ГОСТ 4543-71 .

2.2.2. Аппаратура, вспомогательное оборудование, материалы, реактивы

Для проведения анализа необходимы оборудование и аппаратура, указанные в п. . При определении бора целесообразнее использовать приборы большой дисперсии типа СТЭ-1, который надежно разрешает линии В 249,6 нм и Fe 249,7 нм. В качестве эталонов можно использовать комплекты ГСО ИСО ЦНИИЧМ - 20, 21, 22, 28, 29, 32, а также производственные МОП, многократно проанализированные различными химическими лабораториями. Остальные материалы, а также реактивы для обработки спектрограмм те же, что и при анализе сталей углеродистых (см. п. ).

2.2.3. Подготовка к анализу

Подготовку проб стали к анализу, установку пробы в штатив производят также, как описано в п. . Система освещения 3-линзовая или однолинзовая, линзы устанавливаются на расстояниях, указанных в паспорте к спектрографу. Ширина щели спектрального аппарата от 0,012 до 0,015 мм. При анализе бора при использовании спектрографов средней дисперсии типа ИСП-30 ширина щели должна составлять от 0,005 до 0,007 мм. Постоянные электроды из меди затачивают, как описано в п. . и используют при дуговом возбуждении. Спектрально чистые угольные электроды (см. п. ) применяют при определении нижеприводимых элементов в высоковольтной искре.

2.2.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используются дуга переменного тока (генератор ДТ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в табл. , ).

2.2.5. Проведение анализа

Анализ проводят методом «трех эталонов».

Установку электродов, проб, эталонов (ГСО ИСО ЦНИИЧМ СОП) описано в п. .

Время предварительного обыскривания для дуги переменного тока 10 с и от 30 до 40 с, для высоковольтной искры от 30 до 40 с.

Эталоны и пробы фотографируют не менее трех раз, экспозицию выбирают в зависимости от чувствительности фотоматериалов. Обработку фотопластинок производят в проявителе и фиксаже того же состава, что и в п. .

Таблица 3

Дуга переменного тока

Величина параметров

Определяемый элемент

Ток дуги, А

Хром, марганец алюминий, ванадий, вольфрам,

Фаза поджига, град

молибден, никель

Аналитический промежуток, мм

От 1,5 до 2,0

Таблица 4

Высоковольтная искра

Величина параметров

Определяемый элемент

Емкость, мкф

Хром, никель, ванадий, молибден, медь, кремний, марганец

Индуктивность, мкГ

Количество цугов за полупериод питающего тока

Задающий искровой промежуток, мм

Аналитический промежуток, мм

Схема «сложная»

2.2.6. Фотометрирование

Измерение почернений на фотопластинке производят на микрофотометре МФ-2 или МФ-4. Ширину щели микрофотометра устанавливают в пределах от 0,15 до 0,25 мм в зависимости от ширины спектральной линии.

2.2.7. Аналитические линии

Для концентраций, указанных в (табл. ) рекомендуются аналитические пары линий с использованием дугового и искрового возбуждений.

Таблица 5

дуга переменного тока

высоковольтная искра

Mn 293,3 - Fe 292,6

Mn 293,3 - Fe 293,6

От 0,100 до 2,900

Cr 267,7 - Fe 268,3

Cr 267,7 - Fe 268,9

От 0,100 до 2,000

Ni 305,0 - Fe 305,5

Ni 239,4 - Fe 239,1

От 0,300 до 2,000

Mo 317,0 - Fe 320,5

Mo 281,6 - Fe 281,8

От 0,100 до 1,000

V 311,0 - Fe 311,6

V 311,0 - Fe 308,3

От 0,100 до 0,700

Si 250,6 - Fe 250,7

Si 251,6 - Fe 251,8

От 0,100 до 0,800

Al 309,2 - Fe 309,4

Al 308,2 - Fe 308,3

От 0,400 до 1,500

W 239,7 - Fe 239,8

От 0,400 до 2,000

B 249,6 - Fe 249,7

От 0,003 до 0,100

Cu 327,3 - Fe 328,6

От 0,200 до 0,600

2.2.8. Построение градуировочного графика

Графики строят в координатах ( D S , lg С ) (см. п. ).

2.2.9. Ошибка воспроизводимости

Стандартная (квадратичная) ошибка воспроизводимости составляет от 2 до 5 % в зависимости от определяемой концентрации.

Примечание . Проба, поставляемая на анализ, должна отвечать требованиям, изложенным в п. .

2.3. Отделение хрома, никеля, марганца, кремния, молибдена, ванадия, ниобия, титана, алюминия, меди в высоколегированных сталях

2.3.1. Назначение

Методика предназначена для определения хрома, никеля, марганца, кремния, молибдена, ванадия, ниобия, титана, алюминия, меди в сталях марок 12X18H9, 12X18H9 T , 12X 18 H10T , 10 X17H 13 M2T , 10Х17Н13М3Т, 08Х18Н12Б и др. по ГОСТ 5949-75 .

2.3.2. Аппаратура, вспомогательное оборудование, материалы реактивы

Для проведения анализа необходимы те же аппаратура, оборудование, материалы, реактивы, что и в п. .

2.3.3. Подготовка к анализу

Пробу стали затачивают при помощи напильника. Качество поверхности должно быть не менее Rz20. Электроды медные и угольные затачивают по форме, описанной в п. . Затем производят фокусировку источника на щель с помощью кварцевого конденсатора или 3-линзовой системы освещения; линзы устанавливают так как указано в п. . Ширина щели спектрографа должна составлять 0,012 мм.

2.3.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используются дуга переменного тока (генератор ДГ-2) и высоковольтная искра (генератор ИГ-3). Основные параметры разрядного контура приведены (в таблице , ).

Таблица 6

Дуга переменного тока

Таблица 7

Высоковольтная искра

Величина параметров

Определяемый элемент

Емкость, мкФ

Хром, никель, молибден, марганец, ванадий, ниобий, титан медь

Индуктивность, мкГ

Количество цугов за полупериод питающего тока

Вспомогательный промежуток, мм

Аналитический промежуток, мм

От 1,5 до 2,0

Схема «сложная»

2.3.5. Проведение анализа

Анализ проводят методом «трех эталонов». Установку электродов, эталонов и проб в штативе производят так, как описано в п. . Аналитический промежуток устанавливают по шаблону или теневой проекции в зависимости от системы освещения. Каждую пробу и эталоны экспонируют не менее трех раз, с предварительным обыскриванием 10 с для дуги переменного тока, для высоковольтной искры от 30 до 40 с. Экспозицию выбирают в зависимости от чувствительности фотоматериала. Обработку экспонированной пластинки производят в стандартном проявителе и закрепителе составов, приведенных в п. .

2.3.6. Аналитические линии

Для концентраций, указанных (в табл. ) рекомендуются аналитические пары линий.

Таблица 8

Пределы определяемых концентраций, %

Cr 279,2 - Fe 279,3

От 14,0 до 25,0

Cr 314,7 - Fe 315,4

Ni 341,4 - Fe 341,3

От 6,0 до 14,0

Ni 301,2 - Fe 300,9

Mo 281,6 - Fe 283,1

От 1,5 до 4,5

V 311,0 - Fe 308,3

От 0,5 до 2,0

Nb 319,4 - Fe 3319,0

От 0,3 до 1,5

Ti 308,8 - Fe 304,7

От 0,1 до 1,0

Mn 293,3 - Fe 293,6

От 0,3 до 2,0

Si 250,6 - Fe 250,7

От 0,3 до 1,2

Cu 327,3 - Fe 346,5

От 0,1 до 0,6

2.3.7. Фотометрирование и построение градуировочного графика

Фотометрирование производят на микрофотометре МФ-2, МФ-4, ширина щели указывается в п. . График строят в координатах ( D S , lgC ) (см. п. ), концентрацию элементов в пробах определяют по градуировочному графику.

2.3.8. Ошибка воспроизводимости

Стандартная (квадратичная) ошибка воспроизводимости в зависимости от концентрации и определяемого элемента составляет от 1,8 до 4,5 %.

Примечания :

1. Проба, поставляемая на анализ, должна удовлетворять требованиям, изложенным в п. .

2. Рекомендуется применение алюминиевых электродов, которые, как показали результаты исследований, проведенных во ВНИИПТхимнефтеаппаратуры, обеспечивают высокую точность и воспроизводимость при форме заточки, описанной в п. .

3. Анализ высоколегированных сталей целесообразно производить в нестандартном источнике возбуждения спектра - высокочастотной искре. Исследования показали, что высокочастотная искра обеспечивает точность определения от 2 до 3 % при анализе высоких концентраций, пятна обыскривания в диаметре имеют размер от 2 до 3 раз меньший по сравнению с высоковольтной конденсированной искрой, что позволяет проводить анализ сварочных проволок малого диаметра, малогабаритных и многослойных сварных швов.

3. ФОТОЭЛЕКТРИЧЕСКИЕ МЕТОДЫ

3.1. Назначение

Методики предназначены для определения хрома, марганца, ванадия, молибдена, титана в высоколегированных сталях марок X18H9, X18H10T, Х18Н11Б, Х20H10M2 T , Х20Н10М3Т и др., а также для определения молибдена, ванадия, марганца, хрома в легированных конструкционных сталях.

3.2. Аппаратура, вспомогательное оборудование, материалы

Фотоэлектрический стилометр ФЭС-1.

Штатив ШТ-16.

Электронный генератор ГЭУ-1.

Точильный станок, набор напильников, устройство или приспособление для заточки электродов.

Комплекты ГСО ИСО ЦНИИЧМ: 9, 27, 45, 46, 94, 29, 21, 32-й и другие, их заменяющие, а также «вторичные» производственные СОП.

Постоянные электроды диаметром 8 мм из электролитической меди марки M-1 по ГОСТ 859-78.

3.3. Подготовка к анализу

Легированные конструкционные стали затачиваются на точильном станке, с торцевой поверхности эталона и пробы. При помощи наждачного камня снимается слой 1 мм, затем заточка производится напильником. Высоколегированные стали затачиваются напильником. Качество обработки поверхности должно быть не менее Rz20. Медные электроды затачивают по форме, описанной в п. . Источник света фокусируют на щель фотоэлектрического стилометра ФЭС-1 растровым конденсором. Вывод источника на оптическую ось, установку растрового конденсора производят согласно описанию прибора.

3.4. Источник возбуждения спектра

В качестве источника возбуждения спектра используется дуга переменного тока с электронным управлением (генератор ГЭУ-1) при различных токах, фаза поджига 90 град, аналитический промежуток составляет 1,5 мм.

3.5. Проведение анализа

Анализ проводят по методу «трех эталонов».

Заточенные эталоны, пробы, электроды помещают в штатив ШТ-16, устанавливают аналитический промежуток 1,5 мм так, как описано в руководстве по эксплуатации ФЭС-1, включают дугу и производят экспонирование с предварительным обжигом 10 с. В качестве линии сравнения используют неразложенный свет. Условия накопления и измерения, а также остальные условия анализа приводятся (в таблице ).

3.6. Построение градуировочного графика

График строят в координатах n , lgC

где n - показание подвижной шкалы потенциометра;

lgC - логарифм концентрации.

Концентрацию элементов в пробе определяют по градуировочному графику.

3.7. Ошибка воспроизводимости

Таблица 9

Величина дуги, А

Ширина входной щели, мкм

Ширина выходной щели, мкм

Номер фильтра

Условия накопления и измерения

Уровень сигнала неразложенного света

Аналитические линии, нм

Титан в нержавеющих сталях

От 0,2 до 1,0

Ниобий в нержавеющих сталях

От 0,3 до 1,5

Молибден в нержавеющих сталях

От 1,5 до 4,5

без фильтра

От 0,7 до 1,5

Молибден в конструкционных сталях

От 0,1 до 0,7

Ванадий в нержавеющих сталях

От 0,8 до 2,5

Ванадий в конструкционных сталях

От 0,1 до 0,8

Марганец в нержавеющих сталях

От 0,4 до 2,0

Марганец в среднелегированных и конструкционных сталях

От 0,2 до 2,0

Хром в нержавеющих сталях

без фильтра

Хром в среднелегированных конструкционных сталях

От 0,3 до 15

без фильтра

Квадратичная ошибка воспроизводимости в зависимости от определяемой концентрации и элемента составляет от 1,5 до 2,5 %.

4. ПРАВИЛА БЕЗОПАСНОСТИ ПРИ РАБОТЕ В СПЕКТРАЛЬНОЙ ЛАБОРАТОРИИ

4.1. Общие положения:

впервые приступивший к работе лаборант-спектроскопист может начать работу лишь после получения инструктажа по технике безопасности у заведующего спектральной лабораторией, непосредственно на рабочем месте;

после десятидневного дублирования работы (с опытным спектроскопистом) проводят повторный инструктаж;

к самостоятельной работе допускается квалификационный комиссией после проверки знаний;

повторный инструктаж проводят не реже двух раз в год;

проведение инструктажа и разрешение на самостоятельную работу каждый раз заносят в контрольный журнал с оформлением подписями зав. лабораторией и получившего инструктаж;

лаборант-спектроскопист должен знать как общие, так и предусматриваемые инструкцией, правила по ТБ. Несоблюдение правил влечет за собой меры административного взыскания, а в более тяжелых случаях - привлечение к судебной ответственности.

4.2. Правила безопасности при подготовке источников возбуждения к работе:

напряжение генератора (искрового) порядка 15000 В является опасным для жизни человека, категорически запрещается включать генератор не опробованный и не проверенный старшим по смене;

перед включением генератора необходимо проверить правильность схемы включения, что следует делать только при отключении его от сети. Осмотр приборов следует производить только при отключенной сети генератора;

генератор считают подготовленным к работе тогда, когда проверены:

исправность проводов первичной и вторичной цепи,

наличие заземления его корпуса,

исправность выключателя, помещенного на пульте управления генератора,

правильность подключения электрода,

заземление рельса оптического прибора, при невыполнении хотя бы одного из этих пунктов, включать генератор запрещается;

повреждения первичной или вторичной цепи генератора устраняет дежурный электрик;

заземляющие провода следует подключать только к капитальным шинам заземления.

4.3. Правила безопасных приемов работы:

при управлении работой генератора следует стоять на резиновом диэлектрическом коврике;

нельзя касаться электродов при включении генератора;

горячие электроды брать только пинцетом;

при использовании штативов открытого типа, фотографирование спектра производить только в защитных очках;

при отсутствии вытяжной вентиляции в помещении, работать с источником возбуждения запрещается;

исправлять генератор можно только отключив его от сети;

при работе на генераторе с конденсированной искрой в помещении должно быть не менее двух человек, включая работающего;

фотометрирование проводить в затемненной комнате, чередуя с фотографированием;

все операции по подготовке пробы, связанные с выделением газов, производить под вытяжкой;

оставляя помещение, необходимо выключить общий рубильник, дверь помещения закрыть на ключ.

4.4. Правила безопасности при заточке электродов и проб:

к заточке электродов можно приступить только после получения инструктажа;

наждачный камень должен находиться только в защитном кожухе;

наждачный станок должен быть заземлен;

работать на вибрирующем наждачном круге запрещается;

зазор между подручником и кругом не должен превышать 2 - 3 мм;

при работе нужно стоять сбоку, а не против наждачного круга;

работать на наждачном круге следует в защитных очках;

мелкие затачиваемые пробы необходимо удерживать ручными тисками или специальными зажимами;

наждачный станок должен быть хорошо освещен.

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ ТЕХНОЛОГИИ ХИМИЧЕСКОГО И НЕФТЯНОГО АППАРАТОСТРОЕНИЯ (ВНИИПТхимнефтеаппаратуры)

СОГЛАСОВАНО:

Всесоюзный научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения (ВНИИнефтемаш)

Специальное проектно-конструкторское и технологическое бюро химического и нефтяного машиностроения (СКТБХиммаш)

Список литературы

1. Гиллебранд В.Ф. Практическое руководство по неорганическому анализу, Госхимиздат, Москва, 1957.

2. Дымов A . M. Технический анализ. М., «Металлургия», 1964.

3. Степин В.В., Силаева Е.В. и др. Анализ черных металлов, сплавов и марганцевых руд. М., Изд-во черной и цветной металлургии, 1964.

4. Теплоухов В.И. Экспресс-анализ стали. М., Изд-во черной и цветной металлургии, 1961.

5. Пешкова В.М., Громова М.И. Практическое руководство по спектрофотометрии и колориметрии. М., Изд-во МГУ , 1965.

6. Химический и спектральный анализ в металлургии. Практическое руководство. М., «Наука», 1965.

7. Конкин В.Д., Клемешов Г.А., Никитина О.И. Методы химического, физико-химического и спектрального анализа сырья, металла и шлака на металлургических заводах. Харьков, Изд-во черной и цветной металлургии, 1961.

8. Бабко А.К., Марченко А.В., Фотометрический анализ. Методы определения неметаллов, М., «Химия», 1974.

9. Шарло Г., Методы аналитической химии. Количественный анализ неорганических соединений, М., «Химия», 1966.

10. Редкоземельные элементы. Изд-во Академии наук СССР, Москва, 1963.

11. Сендел Е. Колориметрические методы определения следов металлов, Изд-во «Мир», Москва, 1964.

12. Коростелев П.П. Реактивы и растворы в металлургическом анализе. Москва, Изд-во «Металлургия», 1977.

13. Редкоземельные элементы. Изд-во Академии наук СССР, Москва, 1963.

14. Васильева М.Т., Малыкина В.М. и др. Анализ бора и его соединений, М., Атомиздат, 1965.

15. Конкин В.Д., Жихарева В.И. Комплексонометрический анализ, Издательство «Техника», Киев, 1964.

16. Еремин Ю.Г., Раевская В.В. и др. «Заводская лаборатория», 1964, № 12.

17. Еремин Ю.Г., Раевская В.В., Романов П.Н. Известия высших учебных заведений. «Химия и химическая технология», т. IX, вып. 6, 1966.

18. Еремин Ю.Г., Раевская В.В., Романов П.Н. «Журнал аналитической химии», 1966, т. XXI, 11, стр. 1303

19. Еремин Ю.Г., Раевская В.В., Романов П.Н. «Заводская лаборатория», 1962, № 2.

Определяемый элемент

Наименование метода анализа

Текущие затраты

Капитальные вложения

Приведенные затраты

Кулонометрический

Кулонометрический

Газообъемный

Фосфор в углеродистых сталях

Фотоколориметрический

Фотоколориметрический

Объемный

Фосфор в легированных сталях

Титриметрический

Экстракционно-фотометрический

Фотометрический

Метод с массовой долей вольфрама

Экстракционно-фотометрический

Кремний в легированных сталях

Фотометрический

Фотоколориметрический

Гравиметрический

Кремний в углеродистых сталях

Весовой серноазотнокислотный

Фотоколориметрический

Весовой солянокислотный

Весовой хлорнокислотный

Фотоколориметрический

Никель в легированных сталях

Весовой метод

Дифференциальный спектрофотометрический

Медь в легированных сталях

Экстракционно-фотометрический

Фотоколориметрический

Фотометрический

Полярографический

Титриметрический

Гравиметрический

Атомно-абсорбционный

Цирконий в легированных статьях

Весовой купферронофосфатный

Фотоколориметрический

Молибден в легированных сталях

: Весовой плюмбатный

Фотоколориметрический

Фотоколориметрический

Ванадий в легированных сталях

Объемный метод

Фотоколориметрический

Потенциометрический

Алюминий в легированных сталях

Весовой с электролизом

Фотоколориметрический

Весовой фторидный

Кобальт в легированных сталях

Фотометрический (0,1 - 0,5 %)

Фотоколориметрический

Фотометрический (0,5 - 3,0 %)

Мышьяк в углеродистых сталях

Объемный

Фотоколориметрический

Фотоколориметрический

Бор в легированных сталях

Колориметрический с хинализарином

Экстракционно-фотометрический

Колориметрический с кармином

Потенциометрический

Ниобий в легированных сталях

Весовой гидролитический

Фотоколориметрический

Весовой с таннином

Фотоколориметрический

Фотоколориметрический роданидный

Церий в легированных сталях

Фотоколориметрический

Фотоколориметрический

Примечания к приложению:

текущие затраты на выполнение одного анализа складываются из суммы зарплаты лаборантов, амортизации на оборудование, занятого при выполнении анализа и стоимости химических реактивов, применяемых для одного анализа;

капитальные вложения включают в себя стоимость оборудования, относимого на выполнение одного анализа;

приведенные затраты включают в себя текущие затраты и капвложения, умноженные на нормативный коэффициент, равный 0,15.


С каждым годом методы проведения лабораторных анализов в АНО «Центре Химических Экспертиз» становятся все более совершенными, однако передовые позиции, несомненно, занимает спектральный анализ металлов и изделий из них. Причем, он основывается не только на выявлении элементов, входящих в их состав, но и на определении их характеристик и свойств, которые нужно учитывать в указанных системах.

Что представляет собой спектральный анализ металлов

Данное исследование позволяет выявить количественный и качественный состав металлов. Оно осуществляется непосредственно в лабораторных условиях, опытными специалистами. Определение количественных показателей заключается в исчислении объема, содержания примесей, указанных в цифрах и процентном содержании.

А определение качественных показателей подразумевает под собой выявления свойств и характеристик конкретного компонента. Анализы обоих видов проводятся с помощью современного оборудования и специальных реактивов.

Выбор материалов для спектрального исследования

Несомненно, спектральный анализ металлов может выполняться в различных сферах. Чаще всего он применим в сфере металлургии, ведь там обязательно должны создаваться учреждения, которые с помощью специальных методов выявляют качество производственной продукции конкретной марки.

Проводить данный анализ целесообразно перед приобретением большой партии металлопродукции, для того, чтобы убедиться в её качестве и пригодности. Заказчику для проведения анализа потребуется лишь предоставить в лабораторию небольшой образец металла и заполнить необходимую документацию. Получить результаты исследования на руки можно в сроки, установленные конкретным учреждением.

Оказание услуг по проведению химического анализа металла

Мы можем выполнить следующие работы:

Химический состав, химанализ металла:

    Определить химический состав сталей и сплавов

    Подтвердить марки сталей

    Восстановить документацию на продукцию

    Подтвердить или опровергнуть сертификат

    Входной контроль металлов и сплавов

    Сортировать лом из черных и цветных металлов

    Определить химический состав рудных пород

    Подобрать аналог сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 8.0 Prof)

Механические испытания:

    Сжатие и растяжение

    Определение твердости

Варианты сотрудничества:

    Проведение испытаний на предприятии заказчика

    Испытание образцов в нашей лаборатории

    Выезд в регионы и получение образцов через транспортные компании

Оперативность

Выезд специалиста на объект заказчика

Работа на всей территории РФ

Высоко квалифицированные специалисты

Работа в соответствии ГОСТ

Подбор аналогов сталей и сплавов

Консультация специалиста

Заявка в один клик (заказать услугу с сайта)

"Сталь. Метод рентгенофлюоресцентного анализа"

ГОСТ 12353-78, ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12350-78, ГОСТ 12346-78, ГОСТ 12347-77, ГОСТ 12348-78, ГОСТ 12352-81, ГОСТ 12355-78

Используемое оборудование для химического анализа

ВСЕ ОБОРУДОВАНИЕ ИМЕЕТ ДЕЙСТВУЮЩИЕ СВИДЕТЕЛЬСТВА О ПОВЕРКЕ.


X-MET 8000 является рентгенофлуоресцентным портативным энергодисперсионным спектрометром с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89.

Диапазон измеряемых элементов: от Mg до Bi.

PMI MASTER UVR-мобильный оптико-эмиссионный анализатор металлов, который позволяет проводить высокоточный анализ и определять марку любых сталей и сплавов с возможностью анализа углерода, серы, фосфора.

АRC-MET-8000 портативный оптико-эмиссионный анализатор работающий в аргоновом режиме. С возможностью определения и прекрасной повторяемостью результатов по углероду, сере, фосфору и бору.

Стационарный твердомер по методу Роквелла МЕТОЛАБ101
Стационарный твердомер используется для измерения твердости твердых сплавов, а также закаленных и не закаленных сталей, литья, подшипниковых сталей, алюминиевых сплавов, тонких плит твердых сплавов, меди, цинкованных, хромированных и луженых покрытий поверхностей и др. по методу Роквелла.
Свидетельство об утверждении типа средств измерений RU.C.28.002.A № 63563.

Последовательность измерения

1 2
  • X-MET 8000
  • PMI MASTER UVR
3

Определение химического состава образца

Сегодня проведение химического анализа металлов - стилоскопирования - не требует нарушения целостности проверяемой конструкции или подготовки образцов. Чтобы сделать спектральный анализ и определить физико-химические характеристики металлов и сплавов, в лабораторию обращаться тоже необязательно: современный фотоэлектрический метод спектрального анализа позволяет контролировать качество готовых изделий даже в полевых условиях.

Зачем нужен спектральный анализ металлов и сплавов?

Проведение спектрального анализа металлов с помощью стационарных или портативных приборов, использующих метод рентгенофлуоресцентного спектрального анализа стали согласно ГОСТ 28033–89, призвано помочь профильным предприятиям в сортировке металла.

Подобное решение демонстрирует целый ряд преимуществ. Чтобы провести экспертизу металла не понадобится много времени. Результат будет известен уже через несколько минут. Такая мини-лаборатория по химическому анализу металла значительно сократит издержки производственного предприятия, крупного ритейлера и коммунальные службы. Устанавливаемая на спектральный анализ металла цена в специализированных организациях и график их работы больше не имеют значения: однажды купив анализатор металлов и пройдя курс подготовки специалистов, которые будут с ним работать в дальнейшем, ваша компания сможет организовать спектральный анализ металла в удобное время и в удобном месте.

Используется химический анализ металла в следующих случаях:

    Подтверждение марки, подтверждение сертификатов.

    Сортировка лома металлов и сплавов. В этой сфере достаточно распространены фальсификации, однако если приемщиками используется химический анализ, определение металла, дающее максимально точный результат, гарантированно избавит предприятие от убытков.

    Калибровочные программы прибора.

С какими веществами работает анализ химического состава металлов?

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится в лаборатории с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi. Метод подходит для определения химического состава и марки стали, других металлов. В частности, допускается:

  • химический анализ алюминиевых сплавов;
  • химический анализ титановых сплавов;
  • анализ сплавов железа и т. д.

Универсальная программа химического анализа сплавов использует несколько фундаментальных параметров для анализа металлов и сплавов, стандартный набор из 33 элементов: Mg, Al, Si, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Y, Zr, Nb, Mo, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Pt, Ir, Au, Pb, Bi в концентрациях от 0 до 100%. Применима для анализа металлов на любой основе: Pb, W, Au и пр., ферросплавов

Как работает химический анализ металлов и сплавов?

Для того чтобы сделать сделать химический экспресс анализ металла, достаточно приложить к его поверхности один из реализуемых нами приборов. Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Приборы для проведения спектрального анализа

Что такое рентгенофлуоресцентный анализатор?

Рентгенофлуоресцентный спектрометр представляет собой аналитический прибор, который определяет каждый химический элемент, присутствующий в тестируемом образце.

Это устройство также определяет общее количество химических элементов в образце.

X-MET 7500

Рентгенофлюоресцентный анализ химического состава металлов и сплавов производится с помощью рентгенофлюоресцентного анализатора типа X-MET 7500 с возможностью определения легких элементов Mg, Al, Si, P, S в соответствии с ГОСТ 28033-89. Диапазон измеряемых элементов: от Mg до Bi.Рентгенофлюоресцентный метод основан на зависимости интенсивности характеристических линий флюоресценции элемента от его массовой доли в пробе.

Данный вид контроля используется в следующих случаях:

  • Определение химического состава сталей и сплавов.
  • Восстановление документации на продукцию.
  • Подтверждение марки,подтверждение сертификатов.
  • Входной контроль металлов и сплавов.
  • Сортировка лома металлов и сплавов.
  • Подбор аналогов сталей и сплавов (с использованием специальной программы - марочника сталей Win Steel 7.0 Prof).

Какие параметры позволяет определить химанализ металла?

Пользователю доступен набор из 8 специализированных эмпирических программ: «низколегированные стали и чугуны», «нержавеющие стали», «инструментальные стали», «алюминиевые сплавы», «медные сплавы», «кобальтовые сплавы», «титановые сплавы», «никелевые сплавы». Выбор программы, с помощью которой планируется проводить определение химического состава металла, осуществляется автоматически.

  • Программа для идентификации спектра (да/нет).
  • Программа для анализа углеродистых, низколегированных сталей и чугунов.
  • Программа для анализа нержавеющих сталей.
  • Программа для анализа инструментальных сталей.
  • Программа для анализа медных сплавов.
  • Программа для анализа никелевых сплавов.
  • Программа для анализа титановых сплавов.
  • Программа для анализа кобальтовых сплавов.
  • Программа для анализа алюминиевых сплавов.
  • Идентификационные программы (да/нет).
  • Функция автоматического определения типа материала и выбора необходимой программы для анализа.
  • Автоматическая коррекция концентраций при измерении образцов малых размеров и сложных форм.
  • Функция рекалибровки по одной точке.
  • Встроенный марочник металлов и сплавов, возможность корректировки и добавления марок.
  • Возможность усреднения результатов не менее чем по 50-ти измерениям для получения достоверных результатов при анализе неоднородных образцов.
  • Возможность создания отчетов в защищенном от корректировки формате PDF по шаблону пользователя с возможностью размещением логотипа компании, результатов измерений, погрешности измерений, времени и длительности измерений, имени оператора и другой информации на выбор пользователя.

Для любой отрасли, так или иначе связанной с металлами - от скупки до металлургического завода, важен состав сырья. Металлы и сплавы должны соответствовать определенным параметрам и для того, чтобы выпустить качественное изделие, и для того, чтобы можно было объективно оценить стоимость материала, попадающего в скупку. Один из таких параметров - химический анализ состава, который можно произвести, не прибегая к помощи сложных реактивов и длительных процессов.

Один из методов определить точный состав металла - спектральный анализ. Он основан на взаимодействии материй со спектром излучений, включая электромагнитное и акустическое. Атомы каждого химического элемента имеют свои резонансные частоты, на которых они излучают или поглощают свет. От количества и состояния вещества зависит количество и интенсивность линий, которые показывает спектрометр. В зависимости от целей проводят разные методы спектрального анализа.

Спектральный анализ золота

Для определения состава металла применяется рентгенофлуоресцентный (элементный) анализ. Спектрометр воздействует на материал рентгеновским излучением, при этом электроны вещества переходят на высокие энергетические уровни. Излишек энергии в виде фотона со строго определенным значением для каждого вещества попадает на детектор прибора. Фотон преобразовывается в импульс напряжения, показания снимаются прибором и передаются на экран в виде графика или цифровых показателей.

Сам метод анализа был открыт в начале XX века, а рентгенофлуоресцентный прибор создали только в 1948 году. Сейчас спектрометры получили широкое распространение - их используют не только в металлургии, ювелирном деле и химической индустрии, но и в нефтяной промышленности, археологии, с их помощью определяют наличие тяжелых металлов в почве и воде, в пищевых продуктах. Ими пользуются экологи и геологи, спектрометрами оснащены даже межпланетные аппараты, берущие пробы пород. Распространенность этого метода связана со скоростью получения результатов и высокой точностью показателей.

Применение спектрального анализа

При вторичной переработке спектральный анализ помогает точно рассортировать черный и цветной лом, а так же определить выбраковку, в литейном производстве с помощью него готовая продукция проходит входной и сертификационный контроль, в промышленности - подтверждение качества материалов, поступивших в производство. Для анализа берутся или специально отлитые пробы, аналогичные по составу основному металлов, или анализируется сам металл. За несколько минут можно получить анализ стали и чугунов, медных, алюминиевых, свинцовых и оловянных сплавов, сплавов титана, лигатур, содержание драгоценных металлов.

В зависимости от целей и объемов существуют стационарные лабораторные, мобильные и портативные спектрометры. Последние наиболее популярны в компаниях по скупке металлов, так как имеют небольшой размер, вес, удобную форму «пистолет», высокую производительность - около 1000 тестов в день и точность показаний. Они просты в применении, работают в воздушной и аргонной среде, имеют марочник металлов, а количество идентифицируемых элементов зависит от характеристик и профиля работы организации - есть приборы и с неограниченным количеством.

Портативные анализаторы позволяют определить количество примесей в ювелирном ломе при скупке золота, покупка автомобильных катализаторов, электронного лома, цветных и черных металлов и их дальнейшая переработка также сопровождается спектральным анализом.

Спектральный анализ в Москве

Наша компания осуществляет моментальную оценку принимаемых в скупку изделий из золота. Менее чем за минуту используемое нами оборудование устанавливает точное содержание золота и других металлов. Это позволяет производить оперативную и объективную оценку в присутствии клиента.

СПЕКТРАЛЬНЫЙ АНАЛИЗ (при помощи спектров испускания) имеет применение почти во всех отраслях хозяйства. Широко применяется в металлопромышленности для быстрого анализа железа, стали, чугуна, а также различных специальных сталей и готовых металлических изделий, для установления чистоты легких, цветных и драгоценных металлов. Большое применение имеет спектральный анализ в геохимии при изучении состава полезных ископаемых. В химической промышленности и близких к ней отраслях спектральный анализ служит для установления чистоты выпускаемой и применяемой продукции, для анализа катализаторов, различных остатков, осадков, мутей и промывных вод; в медицине - для открытия металлов в различных органических тканях. Ряд специальных задач, трудно разрешаемых или вовсе не разрешимых иным путем, решается при помощи спектрального анализа быстро и точно. Сюда относится, например, распределение металлов в сплавах, исследование в сплавах и минералах сульфидных и других включений; такого рода исследования иногда обозначаются термином локальный анализ .

Выбор того или другого типа спектрального аппарата с точки зрения достаточности его дисперсии производится в зависимости от цели и задач спектрального анализа. Для исследования платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt), а также Fe, Co, Ni, Сг, V, Mo, W, Ti, Mn, Zr, Re, Nb и Та наиболее пригодны кварцевые спектрографы с большей дисперсией, дающие для длин волн 4000-2200 Ӑ полоску спектра длиной по крайней мере 22 см. Для остальных элементов м. б. применены аппараты, дающие спектры длиной 7-15 см. Спектрографы со стеклянной оптикой в общем имеют меньшее значение. Из них удобны комбинированные приборы (например, фирмы Гильгера и Фюсса), которые по желанию можно применять в качестве спектроскопа и спектрографа. Для получения спектров применяются следующие источники энергии. 1) Пламя горящей смеси - водорода и кислорода, смеси кислорода и светильного газа, смеси кислорода и ацетилена или наконец воздуха и ацетилена. В последнем случае температура источника света доходит до 2500-3000°С. Пламя наиболее всего пригодно для получения спектров щелочных и щелочноземельных металлов, а также для таких элементов, как Сu, Hg и Тl. 2) Вольтова дуга . а) Обычная, гл. обр. постоянного тока, силой 5-20 А. С большим успехом она применяется для качественного анализа трудно сплавляемых минералов, которые вводятся в дугу в виде кусочков или тонко растертых порошков. Для количественного анализа металлов применение обычной вольтовой дуги имеет очень существенный недостаток, заключающийся в том, что поверхность анализируемых металлов покрывается пленкой окиси и горение дуги становится в конце концов неравномерным. Температура вольтовой дуги доходит до 5000-6000°С. б) Прерывистая дуга (Abreissbogen) постоянного тока силой 2-5 А при напряжении около 80 V. При помощи специального приспособления горение дуги прерывается 4-10 раз в сек. Этот способ возбуждения уменьшает окисление поверхности анализируемых металлов. При более высоком напряжении - до 220 V и силе тока 1-2 А - прерывистая дуга может применяться также и для анализа растворов. 3) Искровые разряды , получаемые при помощи индукционной катушки или, чаще, трансформатора постоянного или (предпочтительнее) переменного тока мощностью до 1 kW, дающего во вторичной цепи 10000-30000 V. Применяются три типа разрядов, а) Искровые разряды без емкости и индуктивности во вторичной цепи, называемые иногда дугой высокого напряжения (Hochspannungsbogen). Анализ жидкостей и расплавленных солей при помощи таких разрядов отличается большой чувствительностью. б) Искровые разряды с емкостью и индуктивностью во вторичной цепи, часто называемые также конденсированными искрами , представляют собой более универсальный источник энергии, пригодный для возбуждения спектров почти всех элементов (кроме щелочных металлов), а также газов. Схема включения дана на фиг. 1,

где R - реостат в первичной цепи, Тr- трансформатор переменного тока, С 1 - емкость во вторичной цепи I, S - переключатель для изменения индуктивности L 1 , U - синхронный прерыватель, LF - искрогаситель, F - рабочий искровой промежуток. В резонанс ко вторичной цепи I при помощи индуктивности и переменной емкости С 2 настраивается вторичная цепь II; признаком наличия резонанса является наибольшая сила тока, показываемая миллиамперметром А. Назначение вторичной цепи II синхронного прерывателя U и искрогасителя LF - делать электрические разряды возможно однообразными как по характеру, так и по числу в течение определенного промежутка времени; при обычных работах такие добавочные приспособления не вводятся.

При исследованиях металлов во вторичной цепи применяется ёмкость 6000-15000 см и индуктивность до 0,05-0,01 Н. Для анализа жидкостей во вторичную цепь иногда вводится водяной реостат с сопротивлением до 40000 Ом. Газы исследуются без индуктивности с небольшой емкостью. в) Разряды токов Тесла, которые осуществляются при помощи схемы, изображенной на фиг. 2,

где V - вольтметр, А - амперметр, Т - трансформатор, С - емкость, Т-Т - трансформатор Тесла, F - искровой промежуток, куда вводится анализируемое вещество. Токи Тесла применяются для исследований веществ, которые имеют невысокую точку плавления: различных растительных и органических препаратов, осадков на фильтрах и т. п. При спектральном анализе металлов в случае большого их количества они обычно сами являются электродами, причем им придается какая-либо форма, например, из указанных на фиг. 3,

где а - электрод из анализируемой толстой проволоки, b - из жести, с - согнутая тонкая проволока, d - диск, отрезанный от толстого цилиндрического стержня, е - форма, выпиливаемая из больших кусков литья. При количественном анализе необходимо иметь всегда одинаковую форму и размеры подвергающейся действию искр поверхности электродов. При небольшом количестве анализируемого металла можно воспользоваться оправой из какого-либо чистого металла, например, из золота и платины, в которой укрепляется анализируемый металл, как показано на фиг. 4.

Для введения в источник света растворов предложено довольно много способов. При работе с пламенем применяется распылитель Люндегорда, схематически изображенный на фиг. 5 вместе со специальной горелкой.

Продуваемый через распылитель ВС воздух захватывает испытуемую жидкость, наливаемую в количестве 3 -10 см 3 в углубление С, и в виде тонкой пыли относит ее в горелку А, где происходит смешение с газом. Для введения растворов в дугу, а также в искру применяются чистые угольные или графитовые электроды, на одном из которых делается углубление. Необходимо, однако, отметить, что очень трудно приготовить угли совершенно чистыми. Применяемые для очистки способы - попеременное кипячение в соляной и плавиковой кислотах, а также прокаливание в атмосфере водорода до 2500-3000°С - не дают углей, свободных от примесей, остаются (хотя и следы) Са, Mg, V, Ti, Al, Fe, Si, В. Удовлетворительной чистоты получаются также угли путем прокаливания их на воздухе при помощи электрического тока: через угольный стержень диаметром 5 мм пропускается ток силой около 400 А, и достигаемое таким путем сильное накаливание (до 3 000°С) оказывается достаточным для того, чтобы в течение нескольких секунд большинство загрязняющих угли примесей улетучилось. Существуют также такие способы введения растворов в искру, где сам раствор является нижним электродом, и искра проскакивает на его поверхность; другим электродом может служить какой-либо чистый металл. Примером такого устройства может служить изображенный на фиг. 6 жидкостный электрод Герляха.

Углубление, куда наливается испытуемый раствор, облицовывается платиновой фольгой или покрывается толстым слоем позолоты. На фиг. 7 изображен аппарат Хитчена, служащий также для введения растворов в искру.

Из сосуда А испытуемый раствор слабой струей поступает через трубку В и кварцевую насадку С в сферу действия искровых разрядов. Нижний электрод, впаянный в стеклянную трубку, прикрепляется к аппарату при помощи каучуковой трубки Е. Насадка С, изображенная на фиг. 7 отдельно, имеет с одной стороны вырез для стенания раствора. D - стеклянный предохранительный сосуд, в котором делается круглое отверстие для выхода ультрафиолетовых лучей. Сосуд этот удобнее делать кварцевым без отверстия. К верхнему электроду F, графитовому, угольному или металлическому, также приспосабливается предохраняющая от брызг пластинка. Для «дуги высокого напряжения», сильно накаливающей анализируемые вещества, Герлях при работе с растворами применяет электроды с охлаждением, как это схематически показано на фиг. 8.

На толстой проволоке (диаметром 6 мм) укрепляется при помощи пробки К стеклянная воронка G, куда помещаются кусочки льда. На верхнем конце проволоки укрепляется круглый железный электрод Е диаметром 4 см и высотой 4 см, на который накладывается платиновая чашечка Р; последняя должна легко сниматься для очистки. Верхний электрод также д. б. толстым во избежание расплавления. При анализе небольших количеств веществ - осадков на фильтрах, различных порошков и т. д. - можно пользоваться приспособлением, изображенным на фиг. 9.

Из испытуемого вещества и фильтровальной бумаги делается комочек, смачивается для лучшей проводимости раствором, например, NaCl, помещается на нижний электрод, состоящий иногда из чистого кадмия, заключенного в кварцевой (хуже стеклянной) трубочке; верхний электрод также является каким-либо чистым металлом. Для таких же анализов при работе с токами Тесла применяется специальная конструкция искрового промежутка, изображенная на фиг. 10 а и б.

В круглом шарнире К укрепляется в нужном положении алюминиевая пластинка Е, на которую накладывается стеклянная пластинка G, а на последнюю - препарат Р на фильтровальной бумаге F. Препарат смачивается какой-либо кислотой или раствором соли. Вся эта система представляет небольшой конденсатор. Для исследования газов применяются закрытые стеклянные или кварцевые сосуды (фиг. 11).

Для количественного анализа газов удобно пользоваться золотыми или платиновыми электродами, линии которых можно применить для сравнения. Почти все из упомянутых выше приспособлений для введения веществ в искру и дугу при работе укрепляются в специальных штативах. Примером может являться штатив Грамона, изображенный на фиг. 12:

при помощи винта D электроды одновременно раздвигаются и сдвигаются; винт Е служит для передвигания верхнего электрода параллельно оптической скамье, а винт С - для боковых поворотов нижнего электрода; для боковых поворотов всей верхней части штатива служит винт В; наконец при помощи винта А можно поднимать или опускать всю верхнюю часть штатива; Н - подставка для горелок, стаканов и пр. Выбор источника энергии для той или иной цели исследования можно сделать, руководствуясь следующей примерной таблицей.

Качественный анализ . При качественном спектральном анализе открытие какого-либо элемента зависит от многих факторов: от характера определяемого элемента, источника энергии, разрешающей способности спектрального аппарата, а также от чувствительности фотографических пластинок. Относительно чувствительности анализа можно сделать следующие указания. При работе с искровыми разрядами в растворах можно открывать 10 -9 -10 -3 %, а в металлах 10 -2 -10 -4 % исследуемого элемента; при работе с вольтовой дугой пределы открытия лежат около 10 -3 %. Абсолютное количество, которое м. б. открыто при работе с пламенем, составляет 10 -4 -10 -7 г, а при искровых разрядах 10 -6 -10 -8 г исследуемого элемента. Наибольшая чувствительность открытия относится к металлам и металлоидам - В, Р, С; меньше чувствительность для металлоидов As, Se и Те; галоиды, а также S, О, N в их соединениях совсем не м. б. открыты и м. б. открыты лишь в некоторых случаях в газовых смесях.

Для качественного анализа наибольшее значение имеют «последние линии», и при анализе задача заключается в наиболее точном определении длин волн спектральных линий. При визуальных исследованиях длины волн отсчитываются по барабану спектрометра; эти измерения можно считать лишь приблизительными, так как точность составляет обычно ±(2-З) Ӑ и в таблицах Кайзера этому интервалу ошибок могут отвечать около 10 спектральных линий, принадлежащих различным элементам, для λ 6000 и 5000 Ӑ и около 20 спектральных линий для λ ≈ 4000 Ӑ. Гораздо точнее определяется длина волн при спектрографическом анализе. В этом случае на спектрограммах при помощи измерительного микроскопа измеряется расстояние между линиями с известной длиной волны и определяемой; по формуле Гартмана находится длина волны последней. Точность таких измерений при работе с прибором, дающим полоску спектра длиной около 20 см, составляет ± 0,5 Ӑ для λ ≈ 4000 Ӑ, ± 0,2 Ӑ для λ ≈ 3000 Ӑ и ± 0,1 Ӑ для λ ≈ 2500 Ӑ. По длине волны в таблицах находят соответствующий элемент. Расстояние между линиями при обычных работах измеряется с точностью до 0,05-0,01 мм. Этот прием иногда удобно комбинировать со съемками спектров с так называемыми заслонками Гартмана, два типа которых изображены на фиг. 13, а и b; при помощи их щель спектрографа можно делать различной высоты. Фиг. 13, с схематически изображает случай качественного анализа вещества X - установление в нем элементов А и В. Спектры фиг. 13, d показывают, что в веществе Y кроме элемента А, линии которого обозначены буквой G, имеется примесь, линии которой обозначены z. При помощи этого приема в простых случаях можно выполнить качественный анализ, не прибегая к промеру расстояний между линиями.

Количественный анализ . Для количественного спектрального анализа наибольшее значение имеют линии, обладающие возможно большей концентрационной чувствительностью dI/dK, где I - интенсивность линии, а К - концентрация дающего ее элемента. Чем больше концентрационная чувствительность, тем точнее анализ. С течением времени разработан целый ряд методов количественного спектрального анализа. Эти методы следующие.

I. Спектроскопические методы (без фотографической съемки) почти все являются фотометрическими методами. Сюда относятся: 1) Метод Барратта . Одновременно возбуждаются спектры двух веществ - испытуемого и стандартного - видные в поле зрения спектроскопа рядом, один над другим. Ход лучей изображен на фиг. 14,

где F 1 и F 2 - два искровых промежутка, свет от которых проходит через призмы Николя N 1 и N 2 , поляризующие лучи во взаимно перпендикулярных плоскостях. При помощи призмы D лучи попадают в щель S спектроскопа. В его зрительной трубе помещается третья призма Николя - анализатор, - вращая которую добиваются одинаковой интенсивности двух сравниваемых линий. Предварительно при исследованиях стандартов, т. е. веществ с известным содержанием элементов, устанавливается зависимость между углом поворота анализатора и концентрацией, и по этим данным вычерчивается диаграмма. При анализе по углу поворота анализатора из этой диаграммы находится искомое процентное содержание. Точность метода ±10 %. 2) . Принцип метода заключается в том, что лучи света после призмы спектроскопа проходят через призму Волластона, где расходятся на два пучка и поляризуются во взаимно перпендикулярных плоскостях. Схема хода лучей показана на фиг. 15,

где S - щель, Р - призма спектроскопа, W - призма Волластона. В поле зрения получаются два спектра B 1 и В 2 , лежащие рядом, друг над другом; L - лупа, N - анализатор. Если вращать призму Волластона, то спектры будут передвигаться относительно друг друга, что позволяет совместить какие-либо две их линии. Например, если анализируется железо, содержащее ванадий, то совмещается линия ванадия с какой-либо близлежащей одноцветной линией железа ; затем, поворачивая анализатор, добиваются одинаковой яркости этих линий. Угол поворота анализатора, как и в предыдущем методе, является мерой концентрации искомого элемента. Метод особенно пригоден для анализа железа, спектр которого имеет много линий, что позволяет всегда найти линии, пригодные для исследований. Точность метода ± (3-7)%. 3) Метод Оккиалини . Если расположить электроды (например, анализируемые металлы) горизонтально и проектировать изображен из источника света на вертикальную щель спектроскопа, то как при искровых, так и при дуговых разрядах линии примесей м. б. открыты в зависимости от концентрации на большем или меньшем расстоянии от электродов. Источник света проектируется на щель при помощи специальной линзы, снабженной микрометрическим винтом. При анализе эта линза передвигается и вместе с ней передвигается изображение источника света до тех пор, пока какая-либо линия примеси в спектре исчезнет. Мерой концентрации примеси является отсчет по шкале линзы. В настоящее время этот метод разработан также и для работ с ультрафиолетовой частью спектра. Надо отметить, что таким же способом освещения щели спектрального аппарата пользовался Локиер и им был разработан метод количественного спектрального анализа, т. н. метод «длинных и коротких линий». 4) Прямое фотометрирование спектров . Описанные выше методы носят название визуальных. Люндегорд вместо визуальных исследований пользовался для измерения интенсивности спектральных линий фотоэлементом. Точность определения щелочных металлов при работе с пламенем достигала ± 5%. При искровых разрядах этот способ неприменим, так как они менее постоянны, чем пламя. Существуют также способы, основанные на изменении индуктивности во вторичной цепи, а также использующие искусственное ослабление света, попадающего в спектроскоп, до исчезновения в поле зрения исследуемых спектральных линий.

II. Спектрографические методы . При этих методах исследуются фотографические снимки спектров, причем мерой интенсивности спектральных линий является почернение, даваемое ими на фотографической пластинке. Интенсивность оценивается или глазом, или фотометрически.

А . Методы без применения фотометрии . 1) Метод последних линий . При изменении концентрации какого-либо элемента в спектре изменяется число его линий, что дает возможность при неизменных условиях работы судить о концентрации определяемого элемента. Фотографируется ряд спектров веществ с известным содержанием интересующего компонента, на спектрограммах определяется число его линий и составляются таблицы, в которых указывается, какие линии видны при данных концентрациях. Эти таблицы служат дальше для аналитических определений. При анализе на спектрограмме определяется число линий интересующего элемента и по таблицам находится процентное содержание, причем метод дает не однозначную его цифру, а границы концентраций, т. е. «от-до». Наиболее достоверно возможно различить концентрации, отличающиеся друг от друга в 10 раз, например, от 0,001 до 0,01%, от 0,01 до 0,1% и т. д. Аналитические таблицы имеют значение лишь для вполне определенных условий работы, которые в различных лабораториях могут очень сильно различаться; кроме того, требуется тщательное соблюдение постоянства условий работы. 2) Метод сравнительных спектров . фотографируется несколько спектров анализируемого вещества А + х% В, в котором определяется содержание х элемента В, и в промежутках между ними на той же фотографической пластинке -спектры стандартных веществ А + а% В, А + b% В, А + с% В, где а, b, с - известное процентное содержание В. На спектрограммах по интенсивности линий В определяется, между какими концентрациями заключается значение х. Критерием постоянства условий работы является равенство интенсивности на всех спектрограммах какой-либо близлежащей линии А. При анализе растворов в них добавляется одинаковое количество какого-либо элемента, дающего линию близко к линиям В, и тогда о постоянстве условий работы судят по равенству интенсивности этих линий. Чем меньше разница между концентрациями а, Ь, с, … и чем точнее достигнуто равенство интенсивности линий А, тем точнее анализ. А. Райс, например, применял концентрации а, b, с, ... , относящиеся друг к другу, как 1: 1,5. К методу сравнительных спектров примыкает метод «подбора концентраций» (Testverfahren) по Гюттигу и Турнвальду, применимый только к анализу растворов. Он заключается в том, что если в двух растворах, содержащих а% А и х% А (х больше или меньше а), что сейчас же можно определить по их спектрам, то прибавляют в какой-либо из этих растворов такое количество n элемента А, чтобы интенсивность его линий на обоих спектрах стала одинаковой. Тем самым определится концентрация х, которая будет равна (а ± n)%. Можно также прибавить в анализируемый раствор какой-либо другой элемент В до равенства интенсивности определенных линий А и В и по количеству В оценить содержание А. 3) Метод гомологических пар . В спектре вещества А + а% В линии элементов А и В не являются одинаково интенсивными и, если этих линий достаточное количество, можно найти две такие линии А и В, интенсивность которых будет одинакова. Для другого состава А + b% В одинаковыми по интенсивности будут другие линии А и В и т. д. Эти две одинаковые линии называются гомологическими парами. Концентрации В, при которых осуществляется та или иная гомологическая пара, называются фиксирующими пунктами этой пары. Для работы по этому методу требуется предварительное составление таблиц гомологических пар при помощи веществ известного состава. Чем полнее таблицы, т. е. чем больше они содержат гомологических пар с фиксирующими пунктами, отличающимися как можно меньше друг от друга, тем точнее анализ. Этих таблиц составлено довольно большое количество, причем они могут иметь применение в любой лаборатории, т. к. точно известны условия разрядов при их составлении и эти условия м. б. совершенно точно воспроизведены. Достигается это при помощи следующего простого приема. В спектре вещества А + а% В выбираются две линии элемента А, интенсивность которых очень сильно меняется в зависимости от величины самоиндукции во вторичной цепи, именно одна дуговая (принадлежащая нейтральному атому) и одна искровая линия (принадлежащая иону). Эти две линии называются фиксирующей парой . Путем подбора величины самоиндукции линии этой пары делаются одинаковыми и составление ведется именно при этих условиях, всегда указываемых в таблицах. При таких же условиях проводится и анализ, и по осуществлению той или иной гомологической пары находится процентное содержание. Имеется несколько модификаций метода гомологических пар. Из них главнейшим является метод вспомогательного спектра , применяемый в том случае, когда элементы А и В не обладают достаточным количеством линий. В этом случае линии спектра элемента А определенным образом связываются с линиями другого, более пригодного элемента G, и роль А начинает играть элемент G. Метод гомологических пар разработан Герляхом и Швейтцером. Он применим как к сплавам, так и к растворам. Его точность в среднем около ±10%.

В . Методы с применением фотометрии . 1) Метод Барратта . Фиг. 16 дает представление о методе.

F 1 и F 2 - два искровых промежутка, при помощи которых одновременно возбуждаются спектры стандартного и анализируемого вещества. Свет проходит через 2 вращающихся сектора S 1 и S 2 и при помощи призмы D образует спектры, которые расположены один над другим. Путем подбора вырезок секторов линии исследуемого элемента получают одинаковую интенсивность; концентрация определяемого элемента вычисляется из соотношения величин вырезок. 2) является аналогичным, но с одним искровым промежутком (фиг. 17).

Свет от F разделяется на два пучка и проходит через секторы S 1 и S 2 , при помощи ромба Гюфнера R две полоски спектра получаются одна над другой; Sp - щель спектрографа. Вырезки секторов изменяются до получения равенства интенсивности линии примеси и какой-либо близлежащей линии основного вещества и по соотношению величин вырезок высчитывается %-ное содержание определяемого элемента. 3) При применении в качестве фотометра вращающегося логарифмического сектора линии получают на спектрограммах клинообразный вид. Один из таких секторов и его положение относительно спектрографа при работе изображены на фиг. 18, а и б.

Вырезка сектора подчиняется уравнению

- lg Ɵ = 0,3 + 0,2l

где Ɵ - длина дуги в частях полной окружности, находящаяся на расстоянии I, измеренном в мм по радиусу от его конца. Мерой интенсивности линий является их длина, т. к. с изменением концентрации элемента длина его клинообразных линий также изменяется. Предварительно по образцам с известным содержанием строится диаграмма зависимости длины какой-либо линии от %-ного содержания; при анализе на спектрограмме измеряется длина той же линии и по диаграмме находится процентное содержание. Имеется несколько различных модификаций этого метода. Следует указать на модификацию Шейбе, применявшего т. н. двойной логарифмический сектор. Вид этого сектора изображен на фиг. 19.

Линии исследуются затем при помощи специального аппарата. Точность, достижимая при помощи логарифмических секторов, ±(10-15)%; модификация Шейбе дает точность ±(5-7)%. 4) Довольно часто применяется фотометрирование спектральных линий при помощи свето- и термоэлектрических спектрофотометров самых различных конструкций. Удобными являются термоэлектрические фотометры, выработанные специально для целей количественного анализа. Для примера на фиг. 20 приведена схема фотометра по Шейбе:

L– постоянный источник света с конденсором К, М – фотографическая пластинка с исследуемым спектром, Sp - щель, О 1 и О 2 - объективы, V - затвор, Th - термоэлемент, который присоединяется к гальванометру. Мерой интенсивности линий является отклонение стрелки гальванометра. Реже пользуются саморегистрирующими гальванометрами, дающими запись интенсивности линий в виде кривой. Точность анализа при применении этого типа фотометрии составляет ±(5-10)%. При сочетании с другими методами количественного анализа точность м. б. повышена; так, например, метод трех линий Шейбе и Шнеттлера, являющийся сочетанием метода гомологических пар и фотометрических измерений, в благоприятных случаях может дать точность ±(1-2)%.